期刊文献+

基于纹理干扰细化的动态火焰识别方法 被引量:4

Dynamic Flame Identification Method Based on the Texture Interference Refining
下载PDF
导出
摘要 针对现有动态火焰识别方法中存在的经验阈值难以确定和因彩色信息丢失导致识别不准确等问题,本文提出一种奇异值分解特征提取配合支持向量机细化分类的火焰图像识别方法。该方法选用火焰的纹理信息作为奇异值分解的一个基础,运用支持向量机的方法对纹理中的干扰因素细化,运用标准FCM识别算法对火焰进行识别。实验结果表明,该算法可排除高亮区域的干扰,准确识别出火焰区域,火焰的识别准确度较高。 Existing dynamic flame identification method of the experience of existing threshold and is difficult to deter- mine because of color information loss lead to inaccurate recognition and so on, this paper presents a kind of singular value decomposition feature extraction with support vector machine refining classification /lame image recognition method. This method is used for flame texture information as a singular value decomposition of a foundation, using sup- port vector machine method to texture the interference factors refining, using standard FCM algorithm to identify flame recognition. The experimental results show that this algorithm can eliminate the interference of highlight areas, accurately identify flame area in flames, and the recognition accuracy is higher.
作者 张武健
出处 《科技通报》 北大核心 2013年第8期151-153,共3页 Bulletin of Science and Technology
关键词 SUV 火焰图像 奇异值分解 SUV flame image singular value decomposition
  • 相关文献

参考文献4

二级参考文献19

  • 1J C Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well - separated clusters[ J]. J. Cybemet, 1973, 3(3) : 32 -57.
  • 2J C Bezdek. Pattem Recognition with Fuzzy Objective Function Algorithms[ M ]. New York : Plenum Press, 1981.
  • 3A K JAN, N MURTYM, P J FLYNN. Data clustering A review [ J]. ACM computer Survey, 1999,31 (3) :264 - 323.
  • 4Young W on lin et. al. On the color image segmentation algorithm based on the thresh holding and the fuzzy cmeans techniques [ J ]. Pattern Recongniton, 1990, 23(6) :935 -952.
  • 5J KE. Fast Accurate Fuzzy Clustering through Reduced Precision [ C]. Master's Thesis University of South Florida, 1999.
  • 6Ming Chuan Hung Don_Lin Yang. An Efficient Fuzzy C - means Clustering Algorithm [ C ]. Proceedings of IEEE International Conference on Data Mining SanJose. 2001. 225 -232.
  • 7P R NIKHIL, J C BEZDEK. On cluster validity for the fuzzy C - means model[ J ]. IEEE Transactions on Fuzzy Systems, 1995,3 ( 3 ) : 370 - 379.
  • 8Y A Tolias, S M Panas. Image Segmentation by a Fuzzy Clustering Algorithm using Adaptive Spatially Constrained Membership Functions[J]. IEEE Transactions on Systems, Man and Cybemetics, 1998, 28(3) :359 -369.
  • 9Yu Jian, Cheng Qiansheng, Huang Houkuan. Analysis of the Weighting Exponent in the FCM [ J ]. IEEE Trans SMC - PartB, 2004,34( 1 ) : 634 -639.
  • 10F Smach,M Atri,J Miteran and M Abid.Design of a Neural Networks Classifier for Face Detection[J].Journal of Com- puter Science ,2006,2(3):257-260.

共引文献63

同被引文献20

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部