摘要
针对不同时段电价差异,以流量平衡为基础,建立以梯级泵站耗电电费最小为目标的优化调度模型,并采用粒子群算法求解.为克服粒子群优化算法易早熟、迭代后期收敛速度慢的缺点,引入免疫思想,以粒子适应度为标准,通过克隆变异算子、疫苗接种算子和优胜劣汰算子,构建双粒子群,增强了粒子群搜索精度和搜索范围,并将其应用于广东某供水工程.优化调度仿真对比分析表明:免疫粒子群算法(IAPSO)能够有效地解决梯级泵站优化调度问题,降低了泵站运行成本,与基本粒子群算法(PSO)和自适应惯性权重粒子群算法(APSO)相比,收敛速度更快,搜索精度更高.
The optimal operation model of cascade pumping stations was built considering the effect of electricity price in different times,which aiming for the minimum total operation costs.In order to overcome the low convergence speed of particle swarm optimization,which is easy to be trapped in local optimization,the clone operator,vaccination operator and survival of the fittest operator in immune algorithm were used,therefore the double particle swarms were constructed.The new approach is verified with an application to water supply project.The results show that the mixed particle swarm optimization is more effective and superior to the basic particle swarm optimization(PSO) and adaptive inertia weight particle swarm optimization(APSO).The results of optimum dispatching of multistage pumping station are satisfied.
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2013年第4期536-539,共4页
Engineering Journal of Wuhan University
基金
国家自然科学基金项目(编号:50879062)
教育部博士点基金项目(编号:20090141110057)
关键词
粒子群优化
优化调度
泵站
免疫算法
particle swarm optimization(PSO)
optimal dispatching
pumping stations
immune algorithm