期刊文献+

基于改进遗传算法的柴油机调速控制研究 被引量:5

Research of Diesel Speed Control System Based on Improved Genetic Algorithm
下载PDF
导出
摘要 以6135柴油机为对象,建立了柴油机简化传递函数和执行机构模型。针对传统PID调速稳定时间长,控制效果不理想,论文提出一种改进遗传算法的PID调速控制策略。改进的遗传算法从加快收敛速度、抑制早熟和提高寻优能力出发,提出了改进的选择算子、自适应交叉算子和自适应变异算子,采用MATLAB软件分别对传统PID和基于改进遗传算法PID的调速控制系统进行了仿真研究。仿真结果表明,改进遗传算法PID控制器具有良好的动态品质和稳定性,其控制效果优于传统的PID控制器。 The transfer function controller models are established for 6135 diesel engine. The paper presents a new method which com bined PID control with improved genetic algorithm (GA). This method overcome some defects of tradition PID control, such as longer speed stability time and lower control dfect. To solve the problem of global convergence,improve the convergence speed and avoid premature con- vergence,an improved genetic algorithm based on select operator,self-adjusting cross operator and mutation operator has been proposed. The paper makes simulation research on the speed control system respectively based on the conventional PID control algorithm and the improved GA PID control algorithm using MATLAB. The simulation results show that the optimal PID controller based on the improved genetic algorithm has a satisfied control effect and is superior to the conventional PID controller.
出处 《舰船电子工程》 2013年第8期164-166,共3页 Ship Electronic Engineering
关键词 柴油机 改进的遗传算法 仿真 diesel engine, improved genetic algorithm, simulation
  • 相关文献

参考文献6

二级参考文献15

  • 1李辉,郑海起,潘宏侠.基于EMD的电机瞬时转速和转矩测量[J].中北大学学报(自然科学版),2006,27(6):491-494. 被引量:3
  • 2.自动控制理论与设计[M].上海:上海交通大学出版社,2001-9..
  • 3熊光楞.控制系统数字仿真[M].北京:清华大学出版社,1988..
  • 4Holland J H. Adaptation in Natural and Artificial Systems[M]. Ann Arbor: The University of Michigan Press, 1975
  • 5Grefenstete JJ. optimization of control parameters for genetic algorithms[J]. IEEE Trans,SMC, 1989,16(1) : 122-128
  • 6M zhang. DP Atherton. Automatic tuning of optimum PID controllers[J]. IEEE proc D, 1993,140(3): 216- 244
  • 7W. Huang, H. N. Lam. Using genetic algorithms to optimize controller parameters for HVAC systems[J]. energy and buidings. 1997, 26:277-282
  • 8Krobling R A, Rey J P. Design of optimal disturbance rejection PID controllers using genetic algorithms[J]. IEEE Trans on Evolution Computation, 2003, 5(1): 78-82.
  • 9王耀南.智能控制系统[M].长沙:湖南大学出版社,1996..
  • 10修杰,夏长亮.基于遗传算法的开关磁阻电机自适应模糊控制[J].电工技术学报,2007,22(11):69-73. 被引量:16

共引文献28

同被引文献24

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部