期刊文献+

柠檬酸对不同混凝剂混凝效果的影响 被引量:4

Effect of citric acid on coagulation process with different coagulants
原文传递
导出
摘要 通过对不同混凝剂(Al2(SO4)3、Fe2(SO4)3、PACl25)混凝过程中絮体粒径大小的测定,研究了在不同pH条件下柠檬酸浓度对3种混凝剂混凝效果的影响.结果发现,随着柠檬酸浓度的增加,3种混凝剂混凝过程中生成絮体的速率和粒径大小都在逐渐降低,但3种混凝剂受到抑制的程度不同:对于硫酸铝,当n(柠檬酸)/n(Al)=0.1时,混凝20min内没有絮体生成;对于硫酸铁,仅当n(柠檬酸)/n(Fe)=0.05时,絮体就不再生成;而当n(柠檬酸)/n(Al)=0.5时,PACl25絮体仍能很快地形成.不同的pH值下柠檬酸对混凝效果的抑制程度也不同:对于硫酸铝,pH=6时生成絮体最大,pH=8时没有絮体生成;对于硫酸铁,pH=5时产生絮体的情况和pH=6时相似,而pH=7时絮体消失;而对于PACl25,絮体大小随着pH值的升高而增大(pH在7~9之间).另外,通过对Zeta电位的测定可知,随着柠檬酸浓度的增加,3种混凝剂的Zeta电位都在降低,但降低的速率不同:硫酸铁>硫酸铝>PACl25,这与絮体粒径大小的变化规律一致. The effect of citric acid on different coagulant processes with different coagulants was explored here, including aluminium sulphate, ferric sulphate and polyaluminum chloride (PACl25). Results showed that the growth rate and size of flocs both decreased with an increasing concentration of citric acid for three coagulants, but some differences existed. There was no flocs formed in 20 minutes at a citric acid/Al(Fe) molar ratio of 0.1(alum) and 0.05 (ferric sulphate), but for polyaluminum chloride (PACl25), flocs were still able to form quickly at a citric acid/Al molar ratio of 0.5. In addition, citric acid inhibited coagulation efficiency at different pH values. Alum flocs were the largest at pH 6, and there was no floc formed at pH 8. The formation of flocs were similar at pH 5 and 6 for Fe2(SO4)3, but the flocs disappeared at pH 7. On the contrary, the size of flocs increased as pH increased from 7 to 9 for PACl25. Zeta potential results showed that with an increasing concentration of citric acid, the zeta potential of flocs with different species of coagulants decreased as Fe2(SO4)3 alum PACl25. These results supported the variation of flocs formed by different species of coagulants influenced by citric acid.
出处 《环境科学学报》 CAS CSCD 北大核心 2013年第9期2428-2431,共4页 Acta Scientiae Circumstantiae
基金 国家自然科学基金(No.51108444 51138008)~~
关键词 柠檬酸 混凝剂 絮体大小 ZETA电位 citric acid coagulant flocs size Zeta potential
  • 相关文献

参考文献11

  • 1Collins M, Amy G, Steelink C. 1986. Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic organic matter: implications for removal during water treatment [ J 1. Environmental Science & Technology, 20(10) : 1028-1032.
  • 2Edzwald J. 1993. Coagulation in drinking water treatment: particles, organics and coagulants [ J 1. Water Science and Technology, 27 (11) : 21-35.
  • 3Huang C P, Shiu H L. 1996. Interactions between alum and organics in coagulation [Jl. Colloids and Surfaces, 113(1/2) : 155-163.
  • 4Komulainen H . 2004. Experimental cancer studies of chlorinated by- products [ J ]. Toxicology, 198 (1/3) : 239-248.
  • 5Kuan W H, Wang M K, Huang P M, et al. 2005. Effect of citric acid on aluminum hydrolytic speciation [ J ]. Water Research, 39 ( 15 ) : 3457-3466.
  • 6Maki-Paakkanen J, Komulainen H, Kronberg L. 2004. Bacterial and mammalian-cell genotoxieity of mixtures of chlorohydroxyfuranones, by-products of water chlorination [ J]. Environmental and Molecular Mutagenesis, 43 (4) : 217-225.
  • 7Marhaba T F, Pipada N S. 2000. Coagulation: Effectiveness in removing dissolved organic matter fractions [ J]. Environmental Engineering Science, 17(2): 107-115.
  • 8Rebhun M, Lurie M. 1993. Control of organic matter by coagulation and floe separation [ J]. Water Science and Technology, 27 (11) : 1-20.
  • 9王东升,赵艳梅,解建坤,等.2010.两种不同微污染饮用水中溶解性有机物的混凝特征[A],第六届海峡两岸水质安全控制技术及管理研讨会[C].郑州.1-7.
  • 10Yu W Z, Gregory J, Campos L C. 2011. Breakage and re-growth of flocs : Effect of additional doses of coagulant species [ J ]. Water Research, 45(20) : 6718-6724.

同被引文献42

  • 1常颖,张金松,王宝贞,黄晓东,尤作亮,梁明.基于分形理论的混凝控制研究[J].中国给水排水,2005,21(2):1-5. 被引量:18
  • 2孙红杰,谷晓昱.絮凝最佳水力条件的实验研究[J].工业水处理,2005,25(5):53-55. 被引量:10
  • 3朱哲,李涛,王东升,姚重华,汤鸿霄.阳离子型聚丙烯酰胺投加量对絮体性状特征的影响[J].环境化学,2007,26(2):175-179. 被引量:25
  • 4Matilainen A, Veps?l?inen M, Sillanp?? M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197.
  • 5Jarvis P, Jefferson B, Parsons S A. How the natural organic matter to coagulant ratio impacts on floc structural properties[J].Environmental Science and Technology, 2005, 39(22): 8919-8924.
  • 6Edzwald J K, Benschoten Van J E. Aluminum coagulation of natural organic matter// Chemical Water and Wastewater Treatment[M]. Springer, 1990: 341-359.
  • 7Wilkinson K, Negre J C, Buffle J. Coagulation of colloidal material in surface waters: The role of natural organic matter[J].Journal of Contaminant Hydrology, 1997, 26(1/4): 229-243.
  • 8Korshin G V, Benjamin M M, Sletten R S. Adsorption of natural organic matter (NOM) on iron oxide: Effects on NOM composition and formation of organo-halide compounds during chlorination[J].Water Research, 1997, 31(7): 1643-1650.
  • 9Henderson RK, Parsons S A, Jefferson B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae[J].Water research, 2010, 44(12): 3617-3624.
  • 10Glover S M, Yan Y D, Jameson G J, et al. Bridging flocculation studied by light scattering and settling[J].Chemical Engineering Journal, 2000, 80(1/3): 3-12.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部