期刊文献+

Simulation of coseismic effects of the Ms7. 0 Lushan earthquake 被引量:3

Simulation of coseismic effects of the Ms7. 0 Lushan earthquake
下载PDF
导出
摘要 Using plane dislocation theory and the seismic-wave inversion results from the Institute of Geophysics, China Earthquake Administration and the Institute of Geodesy and Geophysics, Chinese Academy of Sciences models, the surface coseismic deformation and gravity changes caused by the 2013 Ms7.0 Lushan earthquake are simulated. The simulations of coseismic gravity change and deformation indicate that the dislocation has dip-slip characteristics. The results also show that the coseismic deformation exhibits a symmetrical, positive-and-negative distribution, with the deformation usually being less than 10 mm in the far- field but up to 140 mm in the near-field. The gravity changes are concentrated on the fault-projection area, which is greatly affected by the vertical surface deformation. The gravity change and vertical deformation in the far field are usually less than and 5 mm, respectively, but reach and 330 mm, respectively, in the near field. The simulated results agree well with the measured resuhs, which suggests a theoretical basis for the observed change in gravity before and after this earthquake. Using plane dislocation theory and the seismic-wave inversion results from the Institute of Geophysics, China Earthquake Administration and the Institute of Geodesy and Geophysics, Chinese Academy of Sciences models, the surface coseismic deformation and gravity changes caused by the 2013 Ms7.0 Lushan earthquake are simulated. The simulations of coseismic gravity change and deformation indicate that the dislocation has dip-slip characteristics. The results also show that the coseismic deformation exhibits a symmetrical, positive-and-negative distribution, with the deformation usually being less than 10 mm in the far- field but up to 140 mm in the near-field. The gravity changes are concentrated on the fault-projection area, which is greatly affected by the vertical surface deformation. The gravity change and vertical deformation in the far field are usually less than and 5 mm, respectively, but reach and 330 mm, respectively, in the near field. The simulated results agree well with the measured resuhs, which suggests a theoretical basis for the observed change in gravity before and after this earthquake.
出处 《Geodesy and Geodynamics》 2013年第3期12-18,共7页 大地测量与地球动力学(英文版)
基金 supported by the National Natural Science Foundation of China(41104049) the Seismic Industry Research Project(201008001) the Earthquake Tracking Task of China Earthquake Administration(2013020211)
关键词 Lushan earthquake dislocation theory coseismic effects SIMULATION Lushan earthquake dislocation theory coseismic effects simulation
  • 相关文献

参考文献13

二级参考文献193

共引文献990

同被引文献44

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部