期刊文献+

基于手机平台的SIFT算法研究 被引量:1

Text-image template matching research based on mobile phone
下载PDF
导出
摘要 由于文字图像的特殊性,产生的特征点数目少,且不同文字产生的特征向量存在强干扰性,导致匹配结果不理想。对SIFT算法进行研究,提出一种对文字模板匹配更有效的SIFT改进算法,改进后的算法能有效增加特征点的数目,消除非匹配点的干扰。经实验测试,SIFT改进算法比原来算法明显提高了文字模版匹配的准确率。 Using the SIFT Algorithm to extract cannot get enough feature points due to the par- ticularity of the text images. And strong inferences between different words lead the bad matc- hing results. This paper made a research on the SIFT algorithm and proposed a more efficient SIFT algorithm for text images template matching. The modified algorithm can effectively in- crease the number of feature points and eliminate the interference of non-matching points. It can effectively improve the accuracy of the text template matching as proved by laboratory test.
作者 寇宏达 程茂
出处 《河北农业大学学报》 CAS CSCD 北大核心 2013年第4期120-123,共4页 Journal of Hebei Agricultural University
基金 河北农业大学理工基金项目(LG20120604)
关键词 文字图像 模板匹配 SIFT算法 特征提取 text image template matching SIFT algorithm feature extraction
  • 相关文献

参考文献8

  • 1Lowe D G. Object recognition from local scale-invari- ant features [C]//Proceedings of the International Conference on Computer Vision, kerkyra, Corfu, Greece : IEEE Computer society, 1999 : 1150 - 1157.
  • 2Lowe D G. Distinctive image features from scale-in- variant keypoints[J]. International Journal of Com- puter Vision, 2004,60 (2) : 91 - 110.
  • 3Li J, Allinson N M. A comprehensive review of cur- rent local features for computer vision [J]. Neuro- computing, 2008,71 (10/12) : 1771 - 1787.
  • 4Mikolajczyk K,Tuytelaars T, Schmid C, et al. A compari- son of affine region detectors [J]. International Journal of Computer Vision, 2005,65 ( 1 / 2) : 43 - 72.
  • 5Ke Y, Sukthankar R. PCA-SIFT: a more distinctive rep- resentation for local image descriptors [C]//Proc Conf Computer Vision and Pattern Recognition. Washington D. C. , USA, IEEE Computer society, 2004 : 511 - 517.
  • 6Mikolajczyk K,Sehmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1615 - 1630.
  • 7Zhou H Y,Yuan Y,Shi C M. Object tracking using SIFT features and mean shift[J]. Computer Vision and Image Understanding,2009,113(3) : 345 - 352.
  • 8Lindeberg T. Scale space theory: A basic tool for ana- lysing structures at different scales[J]. Journal of Ap- plied Statistics,1994,21(2) :224 - 270.

同被引文献4

  • 1Mardia,K.V,Kent,J.T,Bibby,J.M. Multivariate Analysis[M].Academic Press,London,1979.
  • 2Mart`nez,A.M,Kak,A.C. PCA versus LDA[J].IEEE Trans on Pattern Analysis and Machine Inteligence,2001,(2):228-233.
  • 3Bicego,M,Lagorio,A,Grosso,E,Tistarelli,M. On the use of SIFT features for face authentication[A].2006.35.
  • 4李刚,高政.人脸自动识别方法综述[J].计算机应用研究,2003,20(8):4-9. 被引量:43

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部