摘要
实验中首先采用多元散射校正(MSC)的方法对煤粉样品的漫反射光谱进行了预处理,然后分别通过偏最小二乘法(PLS)和主成分分析(PCR)的方法建立煤粉样品的近红外光谱的全水分、挥发分和灰分的定量分析模型,通过预测集对建立的模型进行验证,发现利用偏最小二乘法建立的煤粉全水分模型最优,r=0.975,RMSEC=0.166,RMSEP=0.169,RPD=3.22,通过主成分分析方法建立的挥发分和灰分的模型最优,最后通过选取验证集样本对建立的模型进行了验证,得出利用近红外光谱分析技术间接对煤质进行定量分析是可行的。
In the experiment, firstly, quantitative analysis models of the total moisture, volatile matter and ash content of the near infrared spectral of the pulverized coal samples are respectively established by adopting the method ofpartia~ least squares. As the model has high predicted precision and good stability, we can see that is feasible to conduct nondestructive testing to the pulverized coal indirectly using the NIR analysis method. Then a further study is made on the correlation of the total moisture, volatile matter and ash content in pulverized coal samples respectively, through which we found that the ash content and volatile matter in the pulverized coal sample have a high linear correlation. Finally, by comparing the ash content value obtained from the correlation function between the ash content and volatile matter with that obtained from partial least squares model, we can find that the ash content value obtained from the linear correlation between ash content and volatile matter in the pulverized coal ash is more accurate and orecise.
出处
《红外技术》
CSCD
北大核心
2013年第8期522-525,共4页
Infrared Technology
基金
国家自然基金
编号:41201294
江苏省农产品物理加工重点实验室开放基金
编号:JAPP2012-2
山西省青年科技基金
编号:2009021019-3
关键词
近红外光谱
煤粉样品
偏最小二乘法
主成分分析
线性相关
定量分析
near infrared spectrum, pulverized coal samples, partial least squares (PLS), principalcomponent analysis (PCR), linear correlation, quantitative analysis