期刊文献+

基于支撑向量机的说话人确认系统 被引量:2

Speaker Verification System Based on Support Vector Machines
下载PDF
导出
摘要 支撑向量机(SVM)是一种新的统计学习方法,和以往的学习方法不同的是SVM的学习原则是使结构风险(Structural Risk)最小,而经典的学习方法遵循经验风险(Empirical Risk)最小原则,这使得SVM具有较好的总体性能.文章提出一种基于支撑向量机的文本无关的说话人确认系统,实验表明同基于向量量化(VQ)和高斯混合模式(GMM)的经典方法相比,基于SVM的方法具有更高的区分力和更好的总体性能. Support Vector Machine (SVM)is a new statistical learning methods.Compared with other machine learning methods,the learning discipline of SVMs is to minimize the structural risk instead of empirical risk the learning discipline of classical methods,and it gives SVMs better generative performance.This paper proposes a text-independent speaker verification system based on support vector machines.The experiments show that performance of the system based on SVMs is better than those systems based on VQ or GMM.
出处 《计算机工程与应用》 CSCD 北大核心 2000年第12期70-71,91,共3页 Computer Engineering and Applications
关键词 支撑向量机 向量量化 语音识别 说话人确认系统 support vector machine vector quantization Gaussian mixture model speaker verfication speaker recognition
  • 相关文献

参考文献6

  • 11.A E Rosenberg,F K Soong.Recent research in automatic speaker recognition.in Advances in Speech Signal Processing ed.by S.Furui and M.Sondhi,Marcel,Dekker Inc.New York,1991:701-738
  • 22.BurgesC J C.A Tutorial on Support Vector Machines for Pattern Recognition.http://svm.research.belllabs.com/SVMdoc.html,1998
  • 33.J Platt.Fast Training of SVMs Using Sequential Minimal Optimiza- tion.Advances in Kernel Methods-Support Vector Machine Learning, B.S.chlkpf,C.Burges,A.Smola,eds.MIT Press,Cambridge,Mass.,1998
  • 44.Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.Proc.Computer Vision and Pattern Recognition '97,1997:130-136
  • 56.LeCum Y,Jackel L D,Bottou L,et al.Learning Algorithms for Clas- sificationA Comparison on Handwritten Digit Recognition.Neural Ne- tworks:The Statistical Mechanics Perspective,Oh,J.H.,Kwon,C.Cho.S. Eds.World Scientific,1995:261-276
  • 67.Jaakkola T S,Haussler D.Exploiting Generative Models in Discrimi- native Classifiers.Advances in Neural Information Processing Systems 11.M S KearnsS A Solla,D A Cohn,Eds.MIT Press,Cambridge, MA.,1999

同被引文献6

  • 1Vladimir N Vapnik 张学工(译).统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2VladimirN Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.1-125.
  • 3许章遂 房立清 王希武 等.故障信息诊断原理及应用[M].北京:国防工业出版社,2000.11-32.
  • 4杨叔子 史铁林.设备诊断技术的现状与未来[A]..全国设备诊断技术学术会议''95论文集[C].武汉,1995.3~8.
  • 5袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,2000.118-131.
  • 6田盛丰,黄厚宽,李洪波.基于支持向量机的手写体相似字识别[J].中文信息学报,2000,14(3):37-41. 被引量:28

引证文献2

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部