期刊文献+

热推力器层板换热芯流固耦合传热与流动仿真 被引量:5

Fluid-solid coupled heat transfer and flow simulation of platelet heat exchanger in thermal thruster
下载PDF
导出
摘要 热推进技术采用小分子量气体作为推进剂可以获取较高的比冲,是具有巨大应用前景的空间推进技术,而提高热推力器换热芯换热效率是目前亟待解决的问题。本文设计了基于层板结构的换热芯,结合层板结构的传热特点与流固耦合传热理论,对层板换热芯传热和工质流动进行了模拟计算。根据耦合传热理论,将层板与工质的导热简化为系统内部边界条件,通过仿真计算得到了层板流固耦合温度场和流场分布特性,工质可以被加热至2300K以上,验证了层板结构用于热推力器换热芯的有效性。 Thermal propulsion system includes solar thermal propulsion and nuclear thermal propulsion, and it is a significant issue to improve the heat transfer efficiency of the thermal thruster. Based on the fluid-solid coupled heat transfer, this study utilized the platelet heat transfer characteristics to simulate the heat transfer and flow field of the platelet passage. A coupled system included both the coupled flow and the heat transfer between fluid and solid parts, in addition to the coupled heat transfer among solid parts. Simulation result shows that the fluid - solid coupled method can solve the steady heat transfer in the platelet structure, and the propellant can be heated to the design temperature of 2300K for the thermal propulsion system.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第4期20-25,共6页 Journal of National University of Defense Technology
基金 国家863计划资助项目
关键词 热推进 流固耦合 层板换热 数值仿真 thermal propulsion fluid-solid coupled platelet heat transfer simulation
  • 相关文献

参考文献7

  • 1Morio S, Katsuya I, Yoshihiro N. Very small solar thermal thruster made of single crystal tungsten for miero/nanosatellites [ C]. 34th AIAA Joint Propulsion Conference and Exhibit, July 2000, Huntsville, Alabama.
  • 2Olsen A D, Cady E D, Jenkins D S, et al. Solar thermal upper stage cryogen system engineering checkout test [C]. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, June 1999, Los Angeles, California.
  • 3Kennedy F G,Palmer P L. Preliminary design of a micro-scale solar thermal propulsion systemiC]. 38th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit, 7 - 10 July 2002, Indianapolis, Indiana.
  • 4杨杰,杨立军.推进剂通道结构对太阳热发动机影响数值研究[J].航空动力学报,2010,25(5):1156-1162. 被引量:3
  • 5Liu W Q, Chen Q Z. The effect of transpiration cooling with liquid oxygen on the flow field[ R]. AIAA 98 -3515,1998.
  • 6郁新华,全栋梁,刘松龄,胡主根.层板结构内部流场数值模拟研究[J].航空学报,2004,25(6):534-539. 被引量:6
  • 7张纯良,王平.太阳能火箭发动机吸热/推力室流场及性能计算[J].航空动力学报,2006,21(5):943-948. 被引量:6

二级参考文献10

  • 1张纯良,张振鹏,魏志明.太阳能火箭发动机聚光器设计方法[J].航空动力学报,2004,19(4):557-561. 被引量:7
  • 2夏广庆,毛根旺,唐金兰,何洪庆.太阳能热推进的研究与发展[J].固体火箭技术,2005,28(1):10-14. 被引量:4
  • 3Nealy D A, Relder S B. Evaluation of laminated porous wall material for combustor liner cooling[J].Transations of the ASME,Journal of Engineering for Power,1980, 102:268-276.
  • 4Schleinitz J P, Lo R E. Solar-Thermal OTVS in Comparison with Electrical and Chemical Propulsion Systems,[R]. IAF-87-1999.
  • 5Larry M, Leigh, Michael L. Tinker, Dynamic characterization of an inflatable concentrator for solar thermal propulsion[J]. Journal of Spacecraft and Rockets, 2003, 40(1) :24-29.
  • 6王平,张纯良.太阳能火箭发动机推力器内流场模拟研究[D].北京:北京航空航天大学,2004.
  • 7McClanahan J A, Frye P E. Solar thermal Propulsion Transfer stage Design for Near-term Science Mission Applications [R]. 30^th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 1994/Indianapolis, IN, A94-31470.
  • 8Shimizu Morio, Itoh Katsuya, Hitoshi Sato, Hitoshi Naito. Large Solar Thermal Thruster Made of Single Crystal Molybdenum[R]. 51^ST International Astronautical Congress,2000/Rio de Janeiro, Brazil. IAF-00-S. 6. 01.
  • 9Shimizu M, Itoh K and Sato H. Fabrication and Tests of Single Crystal Mo Solar Thermal Thruster[R]. 48th International Astronautical Congress, 1997/Turin, Italy. IAF-97-5.6.03.
  • 10张纯良,高芳,张振鹏,刘玉亭.太阳能热推进技术的研究进展[J].推进技术,2004,25(2):187-192. 被引量:8

共引文献11

同被引文献32

  • 1肖映果,孙文胜,刘伟强.流体静态混合器的应用和新发展[J].现代化工,2005,25(z1):279-281. 被引量:11
  • 2郭伟,赵熹华,宋敏霞.扩散连接界面理论的现状与发展[J].航天制造技术,2004(5):36-39. 被引量:18
  • 3黄万群,李亚江,王娟,沈孝芹.陶瓷/金属钎焊与扩散连接的研究现状[J].焊接,2007(4):11-13. 被引量:14
  • 4Franzoni F, Milani M, Montorsi L, et al. Combined hydrogen production and power generation from aluminum combustion with water: analysis of the concept [ J 1. International Joumal of Hydrogen Energy,2010,35(4) :1548 - 1559.
  • 5Soler L, Macanas J, Munoz M, et al. Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications[ J 1. Journal of Power Sources, 2007,169 ( 1 ) : 144 - 149.
  • 6Watanable M,Jiang X M,Saito R. Method for generating hydrogen gas utilizing activated aluminum fine particles: USA [ P ]. US200501197782, 2005 - 08 - 04.
  • 7Dupiano P, Stamatis D, Dreizin E L. Hydrogen production by reacting water with mechanically milled composite aluminum- metal oxide powders [ J ]. International Journal of Hydrogen Energy,2011,36(8) :4781 -4791.
  • 8Woodall J M,Allen C R, Ziebarth J T. Power generation from solid aluminum: USA[P]. US20070850457, 2007 -09 -05.
  • 9Dai H B, Ma G L, Xia H J, et al. Reacnon ot alummmm wlm alkaline sodium stannate solution as a controlled source of hydrogen[ J]. Energy and Environment Science ,2011,4 ( 6 ) : 2206 - 2212.
  • 10Kravchenko O V, Semenenko K N, Bulychev B M, et al. Activation of aluminum metal and its reaction with water[ J]. Journal of Alloys and Compounds ,2005,397 ( 1 - 2 ) :58 - 62.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部