期刊文献+

时分双工MIMO放大转发中继系统中下行链路的联合鲁棒设计 被引量:1

Joint robust design for TDD MIMO amplify-and-forward relay downlink systems
下载PDF
导出
摘要 考虑了时分双工MIMO放大转发中继系统中下行链路基站预编码器、中继预编码器与用户均衡器的联合设计问题。在实际应用中信道估计误差以及信道互易延迟会显著恶化基于理想信道状态信息(CSI)的联合设计性能。从估计误差的分布和互易延迟的时间相关特性出发,建立了综合考虑两方面因素的联合"估计误差-互易延迟"信道模型。基于该模型,针对第一跳传输设计了信道奇异值分解的基站预编码方案,避免了第二跳CSI的反馈开销,然后将给定中继总发送功率约束下最小化用户和均方误差(SMSE)的中继预编码器和用户均衡器进行联合优化,并利用KKT(Karush-Kuhn-Tucker)条件给出了该优化问题的闭合解。数值结果验证了所提方案的鲁棒性和有效性。 The problem of joint designing the base station (BS) precoder, the relay precoder and user equalizers for TDD MIMO amplifying- and-forwarding relay downlink systems is considered. In practical applications, the channel estimation error and the channel reciprocity delay can result in a serious performance loss of a joint designing based on ideal Channel State Information (CSI). Evolved from the distribution of estimation error and the temporal correlation of reciprocity delay, a joint "estimation error-reciprocity delay" channel model that takes both effects into account was established. Based on this model, a channel SVD-based precoding scheme at BS aiming at the first hop transmission was presented, which avoids the feedback overhead of the second hop CSI. Then a joint optimization problem of the relay precoder and user equalizers, which is based on minimizing the sum mean square error (SMSE) of all users with a constraint on the relay total transmit power, was set up. By using KKT ( Karush- Kuhn-Tucker) conditions, a closed-form solution to this problem was achieved. Numerical results verify the robustness and effectiveness of the proposed scheme.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第4期87-92,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61101096 61101098) 湖南自然科学基金资助项目(11jj4055)
关键词 放大转发中继 下行链路 联合鲁棒设计 时分双工MIMO amplify-and-forward relay downlink joint robust design TDD MIMO
  • 相关文献

参考文献13

  • 1Behbahani A S, Merched R, Eltawil A J. Optimization of a MIMO relay network [ J ]. IEEE Transctions on Signal Processing, 2008, 56 (10) : 5062 - 5073.
  • 2Truong K T, Heath R W. Multimode antenna selection for MIMO amplify-and-forward relay systems [ J ]. IEEE Transctions on Signal Processing, 2010, 58 ( 11 ) : 5845 - 5859.
  • 3Parkvall S, Furuskilr A, Dahlman E. Evolution of LTE toward IMT-Advanced[ J]. IEEE Commun. Mag,2011,49(2) :84 -91.
  • 4Chae C B, Tang T, Heath R W, et al. MIMO relaying with linear processing for multiuser transmission in fixed relay networks[ J]. IEEE Transctions on Signal Processing, 2008, 56(2) : 727 -738.
  • 5Zhang R, Chai C C, Liang Y C. Joint beamforming and power control for muhiantenna relay broadcast channel with QoS constraints[J]. IEEE Trans. Signal Process. , 2009, 57(2) : 726 - 737.
  • 6Xu W, Dong X, Lu W S. Joint precoding optimization for power control for multi-antenna relaying downlinks using quadratic programming[J]. IEEE Trans. Commun. , 2011, 59(5) : 1228 - 1235.
  • 7Xing C, Xia M, Ma S, et al. Cooperative beamforming for dual-hop amplify-and-forward multi-antenna relaying cellular networks[ J/OL]. http ://arxiv. org/abs/1112. 0195 v1.
  • 8孙德春,张霏霏,刘祖军,易克初.TDD-MIMO系统中由I/Q不平衡引起的信道非互易性补偿方法[J].通信学报,2011,32(3):79-85. 被引量:11
  • 9Zheng Y, Blostein S D. Downlink distributed beamforming through relays with imperfect CSI [ C ]//Proc of 22nd IEEE Personal Indoor Mobile Radio Communications, Toronto, Canada, Sept, 2011,9: 1688-1692.
  • 10Xu W, l)ong X. Optimized one-way relaying strategy with outdated CSI quantization for spatial multiplexing[ J]. IEEE Transctions on Signal Processing, 2012.

二级参考文献13

  • 1YUKI Y, KAZUNORI H, HIDEAKI S, et al. Analysis and compensation of transmitter IQ imbalances in OFDMA and SC-FDMA systems[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 3119- 3129.
  • 2TUBBAX J, COME B, VAN DER PERRE L, et al. Compensation of IQ imbalance and phase noise in OFDM systems[J]. IEEE Transaction on Wireless Communications, 2005, 4(3):872-877.
  • 3TELATAR E. Capacity of multi-antenna Gaussian channels[J]. Europe Transaction on Telecommunications (ETT), 1999, 10(6): 585-595.
  • 4FOSCHINI G, GANS M. On limits of wireless communications in a fading environment when using multiple antennas[J]. Wireless Personal Communications, 1998.311-335.
  • 5WILLINK T J. Efficient adaptive SVD algorithm for MIMO applications[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 615-622.
  • 6ANDERSEN J B. Array gain and capacity for known random channels with multiple elements arrays at both ends[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(11): 2172-2178.
  • 7COVER T M, THOMAS J A. Elements of Information Theory[M]. New York: Wiley, 1991.
  • 8LEBRUN G, GAO J, FAULKER M. MIMO transmission over a time-varying channel using SVD[J]. IEEE Transaction on Wireless Communications, 2005, 4(2):757-764.
  • 9MARZETFA T L, HOCHWALD B M. Fast transfer of channel state information in wireless systems[J]. IEEE Transactions on Signal Processing, 2006, 54(5): 1268-1278.
  • 10ESMAILZADEH R, NAKAGAWA M, JONES A. TDD-CDMA for the 4th generation of wireless communications[J]. IEEE Wireless Communications, 2003, 10(4): 8-15.

共引文献10

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部