期刊文献+

一种面向涌现的比较性话题模型 被引量:2

A comparative topic model for words burstiness
下载PDF
导出
摘要 提出一种CDCMLDA生成模型来实现跨文本集的话题分析,采用狄利克雷组合多项式模型(Dirichlet Compound Multinomial,DCM)对文本集中词的涌现现象进行建模,把DCM模型和LDA结合起来分析文本集之间话题的差异,采用蒙特卡罗期望最大化方法进行参数推导。在多个实际数据集中通过定性和定量的方法对模型进行评价,实验表明,模型不仅能够发现不同文本集间的异同,而且在模型困惑度指标上相对当前两种主要跨文本集的话题模型具有明显的优势。 State-of-the-art cross collections topic models suffer from the serious flaw that it cannot capture the tendency of words to appear in bursts. Based on LDA (Latent Dirichlet Allocation), a topic model CDCMLDA( Cross-collection Diriehlet compound multinomial Latent Dirichlet Allocation), which models the burstiness phenomena of words using Dirichlet compound muhinomial (DCM) distribution, was proposed. A Monte Carlo Expectation Maximization algorithm for model inference was presented. A variety of qualitative and quantitative evaluations of CDCMLDA were performed, which shows that CDCMLDA not only discovers the common and unique aspects on topics, but also improves the model perplexity compared with the two cross-collection topic models.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第4期146-155,共10页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60903225) 湖南省自然科学基金项目(11JJ5044) 国防科技大学优秀研究生创新基金项目(S100502)
关键词 比较性文本挖掘 涌现 话题模型 CDCMLDA模型 comparative text mining burstiness topic model CDCMLDA model
  • 相关文献

参考文献24

  • 1Zhai C, Atulya V, Bei Y. A cross-collection mixture mode for comparative text mining[ C ]//Proceedings of The International Conference on Knowledge Discovery and Data Mining. Seattle, Washington, USA : ACM, 2004 : 743 - 748.
  • 2Yin Z, Cao L,Jiawei Hart, et 81. Geographical topic discovery and comparison [ C ]//Proceedings of The International Conference on World Wide Web. Hyderabad, India, 2011:247 -256.
  • 3Paul M, Girju R. Cross-cultural analysis of blogs and forums with mixed-collection topic models [ C ]//Proceedings of The 2009 Conference on Empirical Methods in Natural Language Processing. Singapore, 2009 : 1408 - 1417.
  • 4Paul M, Girju R. Comparative scientific research analysis with a language-independent cross-collection model[ C ]//Proceedings of SEPLN , Valencia, Spain,2010:153-160.
  • 5Madsen R E, Kauchak D, Elkan C. Modeling word burstiness using the dirichlet distribution[C]//Proceedings of the International Conference on Machine Learning, New York: ACM, 2005 : 545 - 552.
  • 6Deerwester S, Dumais S, Furnas G, et al. Indexing by latent semantic analysis [ J ]. Journal of the American Society for Information Science, 1990:41 : 17.
  • 7Hofmann T. Probabilistic latent semantic indexing [ C ]// Proceedings of SIGIR, 1999:50 - 57.
  • 8Blei D M, Ng A Y , Jordan M I. Latent dirichlet allocation [ J ]. Journal of Machine Learning Research, 2003,3 : 993 - 1022.
  • 9Li W, McCallum A. Pachinko allocation: DAG-Struetured mixture models of topic correlations [ C ]//Proceedings of the International Conference on Machine Learning, Pittsburgh, PA ,2006 : 577 - 584.
  • 10Blei D M, Lafferty J D. Correlated topic models [ C ]// Proceedings of the Advances in Neural Information Processing Systems, 2006.

同被引文献57

  • 1Barabasi A L, Albert R. Emergence of Scaling in Random Networks [J]. Science (S0036-8075), 1999, 286: 509-512.
  • 2Lei Chai, Jiawei Chen, Zhangang Han, et al. Emergence of Specialization from Global Optimizing Evolution in a Multi-agent System [C]// ICCS 2007. Germany: Springer-Verlag Berlin Heidelberg, 2007: 98-105.
  • 3Fatihcan M Atay. Synchronization and Emergence in Complex Systems [J]. Pramana-J. Phys. Science (S0304-4289), 2011, 77(5): 855-863.
  • 4Liu Qiang, Fang Jinqing, LI Yong. Analysis of Layer Cross-degree on Super-network Models [R]// Annual Report of China Institute of Atomic Energy. Beijing, China: China Institute of Atomic Energy, 2013.
  • 5Radoshw Michalski, Sebastian Palus, Piotr Brodka, et al. Modelling Social Network Evolution [C]//Soclnfo 2011. Germany: Springer-Verlag Berlin Heidelberg, 2011: 283-286.
  • 6Dirk Aeyels, Filip De Smet. Emergence and Evolution of Multiple Clusters of Attracting Agents [J]. Physica D (S0167-2789), 2010, 239 (12): 1026-1037.
  • 7Zhenwu Tao, Renbin Xiao, Lei Wang. Structure Emergence in the Evolution of Social Networks and its Case Study [J]. Procedia Computer Science (S1877-0509), 2013, 17(01): 981-988.
  • 8Rushed Kanawati. Empirical Evaluation of Applying Ensemble Methods to Ego-centered Community Identification in Complex Networks [J]. Neurocomputing (S0925-2312), 2015, 150(2): 417-427.
  • 9Mark W Jackwood, David Hall, Andreas Handel. Molecular Evolution and Emergence of Avian Gammacoronaviruses [J]. Infection Genetics and Evolution (S1567-1348), 2012, 12(6): 1305-1311.
  • 10胡晓峰.战争复杂网络研究概述[J].复杂系统与复杂性科学,2010,7(2):24-28. 被引量:30

引证文献2

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部