期刊文献+

基于协同进化的多平台联合对地观测优化调度 被引量:10

Scheduling multi-platforms collaborative observation based on cooperative evolution
下载PDF
导出
摘要 在分析了卫星与无人机在执行观测与资源调度上的特性差异基础上,建立了多平台联合对地观测调度问题的数学模型,提出了多平台协同进化调度算法(MPCCPSA)进行求解。MPCCPSA采用分层式协同进化架构解决了不同类型观测方案统一调度生成问题。根据不同类型平台使用特性以及观测目标集合特点,采用分治-合作策略将其分解分配到各平台,顶层的交叉、变异操作保证各种群的多样性,底层的分治、合作算子保证卫星与无人机之间保持观测能力动态互补,在确保可行解的前提下加快收敛速度。仿真实验表明该方法能够有效解决空-天基多类型平台联合观测优化调度问题。 Based on the analysis of the features and differences between satellite and UAV in earth observation and scheduling, a mathematical model was presented to formulate the scheduling problem for the multi-platforms collaborative observation, and a multi-platforms cooperative evolutionary planning and scheduling algorithm (MPCCPSA) was proposed to solve this problem. MPCCPSA uses co-evolution framework for solving the different platforms'observing plans generated in a unified manner. Based on the divide-cooperation strategy and different characteristics of platforms, the observed targets were allocated to each platform. On the top-level, crossover and mutation operations ensured the diversity of the various groups, and the underlying divide-cooperation operators ensured the dynamic complementarity between different platforms. Simulation results show that this method can effectively solve the multi space-aeronautics collaborative observation tasks scheduling problem.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第4期182-188,共7页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(71031007 71101150 71071156 61203180 71101013)
关键词 成像卫星 无人侦察机 联合观测 协同进化 优化调度 satellite UAV collaborative observation cooperative evolution schedule
  • 相关文献

参考文献15

二级参考文献36

  • 1王世新,周艺,魏成阶,邵芸,阎福礼.汶川地震重灾区堰塞湖次生灾害危险性遥感评价[J].遥感学报,2008,12(6):900-907. 被引量:26
  • 2李萍,陶夏新,颜世菊.基于3S技术的震害快速评估[J].自然灾害学报,2007,16(3):109-113. 被引量:12
  • 3Busoniu L, Schutter B D, Babuska R. learning and Coordination in Dynamic Multiagent Systems[R], Technical Report 05-019, Delft Center for Systems and Control, Delft University of Technology, The Netherlands, 2005.
  • 4Busoniu L, Schutter B D. A Comprehensive Survey of Multiagent Reinforcement Learning[J]. IEEE Trans. Syst. Man, Cyber., 2008, 38(2) : 156- 172.
  • 5Hu J,Wellman M P.Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm [C]//Proceedings of 15^th Interntional Conference on Machine Learning, Madison, WI, 1998:242 -250.
  • 6Khatib L, Frank J. Interleaved Observation Execution and Rescheduling on Earth Observing Systems[C]//Proceedings of the 13^th International Conference on Automated Planning and Scheduling, Trento, Italy, 2003.
  • 7Schetter T, Campbell M, Surka D. Multiple Agent-based Autonomy for Satellite Constellatioas[J]. Artificial Intelligence, 2003 (145): 147- 180.
  • 8Cesta A, Ocon J, Rasconi R, et al. Simulating On-board Autonomy in a Multi-agent System with Planning and Sdaeduling[C]//Proceedings of 20^th International Conference on Planning and Scheduling, Toronto, Canada, 2010.
  • 9Smith R G, Davis R. Frameworks for Cooperation in Distributed Problem Solving [ J ]. IEEE Trans. On Systems, Man, and Cybernetics, 1981, 11 (1): 61-70.
  • 10Modi P J, Shen W, Tambe M, Yokoo M. An Asynchronous Complete Method for Distributed Constraint Optimization[C]//Proceedings of 2^nd Autonomous Agent and Multi-agent System, Melbourne, Australia, 2003.

共引文献68

同被引文献83

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部