期刊文献+

Nano-QSAR: 纳米毒理学领域的新方法 被引量:2

Nano-QSAR:An Emerging Approach in Nanotoxicology
下载PDF
导出
摘要 随着纳米毒理学实验研究的不断深入,反映纳米材料生物毒性效应的数据也不断丰富,以这些数据为基础建立的定量结构活性关系(QSAR)模型开始发挥其在纳米材料潜在毒性研究和预测方面的作用。纳米材料的QSAR(Nano-QSAR)研究以经典QSAR模型为指导,结合纳米材料特殊的物理化学性质,提供了一种对纳米材料快速筛选和优先测试的新途径。本文就Nano-QSAR的前期研究现状,从纳米材料结构描述符、毒性效应数据和建模方法3个方面分析了模型的构建流程和框架;通过列举部分研究成果和主要的模型指标,初步探讨了建模方法的选择和结构描述符的识别;最后指出目前Nano-QSAR研究面临的挑战和今后努力的方向。 With the development of studies on safety of nanomaterials, the number of toxicological data reflecting biological effects of nanomaterials keeps increasing. The quantitative structure-activity relationship (QSAR) models begin to play their roles in predicting the potential toxicity of nanomaterials. QSAR models for nanomaterials (Nano-QSAR), on the basis of the classic QSAR methods combining with the special physicochemical properties of nanomaterials, offered a new way to rapidly screen nanomaterials and priotitize testing. The studies on establishing the framework of Nano-QSAR modeling were reviewed from three aspects of structure descriptors, toxicological effect data and modeling methods. Selecting and identifying properly modeling methods and structure descriptors were discussed through listing examples and main indices of Nano-QSAR studies. Finally, current challenges and future direction in Nano-QSAR research were pointed out.
出处 《生态毒理学报》 CAS CSCD 北大核心 2013年第4期487-493,共7页 Asian Journal of Ecotoxicology
基金 教育部高等学校博士点学科专项科研基金课题(20070055033)
关键词 纳米材料 纳米毒理学 Nano-QSAR 结构描述符 数据挖掘 nanomaterials nanotoxicology Nano-QSAR structure descriptor data mining
  • 相关文献

参考文献35

  • 1Oberdiirster G, Oberdiirster E, OberddrsterJ. Nanotoxi?cology: An emerging discipline evolving from studies of ultrafme particles[J]. Environmental Health Perspec?tives, 2005, 113(7): 823 - 839.
  • 2赵宇亮,柴之芳.纳米毒理学一纳米材料安全应用的基础[M].北京:科学出版社,2010:1.
  • 3Hartung T. Toxicology for the twenty-first century[J]. Nature, 2009, 460(9): 208 - 212.
  • 4Cattaneo A G, Gornati R, Sabbioni E, et al. Nanotechn?ology and human health: Risks and benefits[J].Journal of Applied Toxicology, 2010, 30(8): 730 -744.
  • 5Damoiseaux R, George S, Li M, et al. No time to lose?high throughput screening to assess nanomaterial safety[J]. Nanoscale, 2011, 3: 1345 -1360.
  • 6Puzyn T, Leszczynska D, LeszczynskiJ. Toward the de?velopment of "Nano-QSARs ": Advances and challen?ges[J]. Small, 2009, 5(22): 2494 - 2509.
  • 7Fourches D, Pu D, Tropsha A. Exploring Quantitative Nanostructure-Activity Relationships (QNAR) model?ing as a tool for predicting biological effects of manu?factured nanoparticles[J]. Combinatorial Chemistry & High Throughput Screening, 2011,14(3): 217 -225.
  • 8United States Environmental Protection Agency (US EPA). Nanomaterial Research Strategy[R]. Washington DC: Office of Research and Development, 2009.
  • 9National Science and Technology Council (NSTC). Na?tional Nanotechnology Initiative Environmental, Health, and Safety research strategy[R]. Washington DC: Subcommittee on Nanoscale Science, Engineering, and Technology, Committee on Technology, 2011.
  • 10Lai D Y. Toward toxicity testing of nanomaterials in the 21st century: A paradigm for moving forward[J]. WIREs Nanomedicine and Nanobiotechnology, 2012, 4(1): 1 -15.

二级参考文献29

共引文献42

同被引文献52

  • 1徐庭巧,罗自生,徐晓铃,陈亚琪,解静,胡佳伟.纳米碳酸钙改性壳聚糖涂膜对鲜切茄子生理生化指标的影响[J].食品科学,2009,30(4):264-267. 被引量:16
  • 2龙小艺,刘玉英,余达欢,叶丹,文智总,吕建峰,李良翔.纳米TiO_2对贮藏期南丰蜜桔抑菌性能研究[J].生物灾害科学,2012,35(1):61-65. 被引量:7
  • 3尹月玲,刘瑶,章建浩,魏盛.纳米SiO_2复合涂膜材料包装松花蛋的保鲜效果[J].农业工程学报,2012,28(S1):281-287. 被引量:13
  • 4王莉娟,丁文军.纳米毒理研究进展[J].中国药理学与毒理学杂志,2007,21(1):77-80. 被引量:15
  • 5Walker JD, Jaworska J, Comber MHI. Guidelines fordeveloping and using quantitative structure-activity relationships[J]. Environ Toxicol Chem, 2009, 22(8): 1653-1665.
  • 6Puzyn T, Rasulev B, Gajewicz A, et al. Using nano-QSAR topredict the cytotoxicity of metal oxide nanoparticlesfj]. NatNanotechnol, 2011,6(3): 175-178.
  • 7Singh KP, Gupta S. Nano-QSAR modeling for predictingbiological activity of diverse nanomaterials[J]. Rsc Adv, 2014,4(26): 13215-13230.
  • 8Bayer A, Bachmann M, Muller A. A comparison of feature-based MLR and PLS regression techniques for the predict ion ofthree soil constituents in a degraded south African ecosystemfj].Appl Environ Soil Sci, 2012, 5(20): 1-18.
  • 9Karzel H,Potzel U, Potzel W,et al. X-ray diffractometer forhigh pressure and low temperatures[J]. Mater Sci Forum,1991, 79: 419-426.
  • 10Stergiou A, Kerasiotis I,Stergiou C. Crystallographic study ofNdxBal-xCuOy[J], Optoelectron Adv M, 2007, 9(6): 1772-1778.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部