期刊文献+

Characteristics of LDPE and Oriented Montmorillonite Nanocomposites Produced by Electric Field-inducement 被引量:1

Characteristics of LDPE and Oriented Montmorillonite Nanocomposites Produced by Electric Field-inducemenl
下载PDF
导出
摘要 In order to make montmorillonite (MMT) nanosheets disperse in low-density polyethylene (LDPE) with highly homogeneous orientation, alternating voltage is applied to molten LDPE with MMT nanosheets. The effect of electric field on the dispersion of MMT in the solidified LDPE is studied. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses suggest that the MMT nano- sheets are aligned with high anisotropy to the electric field direction, which is perpendicular to the LDPE film plane. Differential scanning calorimetry (DSC) results reveal that the crystallization degree of the oriented LDPE/MMT composite increases. Moreover, through a broadband dielectric spectroscopy analyzer, it is found that MMT manifests a significantly influence in the dielectric property of the oriented composite: the dielectric constant and loss tangent of the composite both become larger. Analysis shows that the electric field-induced torque caused by the polarization of MMT flakes is the main force inducing the orientation of the MMT flakes. In order to make montmorillonite (MMT) nanosheets disperse in low-density polyethylene (LDPE) with highly homogeneous orientation, alternating voltage is applied to molten LDPE with MMT nanosheets. The effect of electric field on the dispersion of MMT in the solidified LDPE is studied. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses suggest that the MMT nano- sheets are aligned with high anisotropy to the electric field direction, which is perpendicular to the LDPE film plane. Differential scanning calorimetry (DSC) results reveal that the crystallization degree of the oriented LDPE/MMT composite increases. Moreover, through a broadband dielectric spectroscopy analyzer, it is found that MMT manifests a significantly influence in the dielectric property of the oriented composite: the dielectric constant and loss tangent of the composite both become larger. Analysis shows that the electric field-induced torque caused by the polarization of MMT flakes is the main force inducing the orientation of the MMT flakes.
出处 《高电压技术》 EI CAS CSCD 北大核心 2013年第8期1947-1951,共5页 High Voltage Engineering
基金 Project supported by National Natural Science Foundation of China (50807054).
关键词 纳米复合材料 LDPE薄膜 电场方向 介电特性 蒙脱土 低密度聚乙烯 扫描电子显微镜 差示扫描量热法 low-density polyethylene montmorillonite electric field-induced alignment orientation electrical insulation relative dielectricconstant loss tangent
  • 相关文献

参考文献19

  • 1Vaia R A. Magnairc J F. Polymer nanocomposites with prescribed morphology: Going beyond nanoparticle-filled pol3qners[J]. Chemistry of Materials, 2007, 19( 1 1 ): 2736-2751 .
  • 2Lu J R. Piezoresistive materials from directed shear-induced assembly of graphite nanosheels in polyethylene[J]. Advanced Functional Materials, 2005, 15(8): 1358-1363.
  • 3Green C D, Vanghan A S. Morphology and crystallisation kinetics of polyethy- lene/montmorillonite nanocomposites[C] // 2007 IEEE International Conference on Solid Dielectrics. Southampton, UK: IEEE, 2007: 368-371.
  • 4Yanlalnoto Y, lkeda M, Tanaka Y. Electrical properties and morphology of polye- thylene produced with a novel catalyst[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 1 1(5): 881-890.
  • 5Su R. Epitaxial crystallization and oriented structure of linear low-density polye- thylene/isotactic polypropylene blends obtained via dynamic packing injection molding[J]. Polymers for Advanced Technologies, 2011,22(2): 225-231.
  • 6Amundson K. Effect of an electric-field on block copolymer microstructure[J]. Macromolecules. 1991,24(24): 6546-6548.
  • 7Park C. Roberlson R E. Crystallization of poly(ethylene oxide) in a photopolyme- rizable rnonomer under an electric field[J]. Polymer, 200 1, 42(6): 2597-2609.
  • 8Krause S, Chandratrcya P. Electrorotation of defomaable fluid droplets[J]. Journal of Colloid and Intertace Science, 1998, 206( 1 ): 1 0-18.
  • 9Bordel D, Putaux J L, Heux L. Orientation of native cellulose in an electric field[J]. Langmuir, 2006, 22(11 ): 4899-4901.
  • 10Habibi Y. Itcim T, Douillard R. AC electric field-assisted assembly and alignment of cellulose nanocrystals[J]. Journal of Polymer Science Part B: Polymer Physics, 2008,46(14): 1430-1436.

同被引文献25

  • 1Maruyama A, Komori F, Suzuoki Y, et al. High temperature PD de- gradation characteristics in bulk and interfaces of insulating materials for power cables[C]//2000 IEEE International Conference on Proper- ties and Applications of Dielectric Materials. Xi'an, China: IEEE, 2000: 264-267.
  • 2Dalai S B, Gorur R S, Dyer M L. Quantifying degradation of XLPE insulated distribution cables[C]//2004 IEEE Power Engineering So- ciety General Meeting. Denver, USA: IEEE, 2004: 1841-1845.
  • 3Scarpa P C N, Bulinski A T, Bamji S, et al. Dielectric spectroscopy measurements on polyethylene aged in AC fields in dry and humid en- vironments[C]// 1994 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Arlington, USA: IEEE, 1994: 437-444.
  • 4Ross R, Geurts W S M, Smit J J. FTIR microspectroscopy and dielec- tric analysis of watertrees in XLPE[C] //1988 Fifth International Conference on Dielectric Materials, Measurements and Applications. Canterbury, New Zealand: IET, 1988: 313-317.
  • 5Stone G C. The statistics of aging models and practical reality[J]. IEEE Transactions on Electrical Insulation, 1993, 28(5): 716-728.
  • 6Fothergill J C, Montanari G C, Stevens G C, et al. Electrical, micro- structural, physical and chemical characterization of HV XLPE cablepeelings for an electrical aging diagnostic data base[J]. IEEE Transac- tions on Dielectrics and Electrical Insulation, 2003, 10(3): 514-527.
  • 7Kobayashi K, Nakayama S, Niwa T. A new estimation method of thermal history in crosslinked polyethylene[C]//1994 IEEE Interna- tional Conference on Properties and Applications of Dielectric Materials. Brisbane, Australia: IEEE, 1994: 678-681.
  • 8GUO Qian. Thermal aging test and life evaluation of low voltage XLPE cable[J]. Electric Wire & Cable, 1999(2): 42-43.
  • 9杜伯学,马宗乐,高宇,程欣欣,杨林,李宏博.采用温差法的10kV交联聚乙烯电缆水树老化评估[J].高电压技术,2011,37(1):143-149. 被引量:22
  • 10王黎明,侯经洲,陈昌龙.用电磁波速诊断XLPE电缆绝缘[J].高电压技术,2011,37(12):2984-2989. 被引量:14

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部