期刊文献+

考虑界面应力时纳米涂层纤维增强复合材料的有效力学性能 被引量:2

EFFECTIVE MECHANICAL PROPERTY OF NANO COATED FIBER REINFORCED COMPOSITES DUE TO INTERFACE STRESS
原文传递
导出
摘要 基于Gurtin-Murdoch表/界面理论和广义自洽方法,获得了考虑界面应力时纳米涂层纤维增强复合材料有效反平面剪切模量的闭合形式解.讨论了涂层的壁厚、力学性能和界面性能对复合材料有效性能的影响.结果显示:在纳米尺度范围内,复合材料的有效反平面剪切模量受纳米涂层的尺寸影响显著.纤维体积分数一定时,涂层壁厚越大,纤维半径越小,有效反平面剪切模量与经典结果偏差越大.纤维刚度和涂层界面性能对复合材料有效模量的影响也取决于涂层刚度,非常软或非常硬的涂层都大大限制了纤维刚度对复合材料有效模量的贡献,过高的涂层刚度屏蔽了纳米复合材料表/界面效应的影响. Based on the Gurtin-Murdoch surface/interface theory and the generalized self-consistent method,the closed-form solution of the effective anti-plane shear modulus of the nano coated fiber rein- forced composites is obtained. The effects of wall thickness, mechanical and interfacial properties of the coating on the effective property of the composites are discussed. The numerical results reveal that the ef- fective modulus is size dependent when the size of the coating is on the order of nanometer. For a fixed fiber volume fraction,the thinner the wall thickness is and the smaller the fiber radius is, the greater of the devi- ation from the classical results is. The influences of the fiber stiffness and coating interfacial property on the effective modulus are dependent on the coating stiffness,i, e. , a very soft or very hard coating can shield the contribution of the fiber stiffness to the effective modulus of composites,and a very hard coating shields the surface/interface effect of the nano composites.
出处 《固体力学学报》 CAS CSCD 北大核心 2013年第4期374-379,共6页 Chinese Journal of Solid Mechanics
基金 国家杰出青年科学基金(50925522) 河北省自然科学基金(A2013203103和A2013203213) 河北省高等学校科学研究计划项目(2010159)资助
关键词 界面应力 涂层纤维 尺寸依赖 广义自洽方法 纳米复合材料 interfacial stress, coated fiber, size dependence, generalized self-consistent method, nanocomposites
  • 相关文献

参考文献23

  • 1Mogilevskaya S G,Crouch S L,Stolarski H K. Multi- ple interacting circular nano inhomogeneities with surface/interface effects[J]. Journal of the Mechanics and Physics of Solids, 2008,56 (5) : 2298-2327.
  • 2Nan C W, Clarke D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites[J]. Acta Materialia, 1996, 44(9) :3801-3811.
  • 3魏悦广.PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES[J].Acta Mechanica Sinica,2001,17(1):45-58. 被引量:13
  • 4Chen H C,Hu G K,Huang Z P. Effective moduli for micropolar composite with interface effect [J]. Inter national Journal of Solids and Structures, 2007,44 (25- 26) :8106 -8118.
  • 5Gurtin M E,Murdoch A I. A continuum theory of e lastie material surfaces[J]. Archive for Rational Me chanies and Analysis,1975,57(4):291- 323.
  • 6Gurtin M E,Weissmuller J, Larche F. A general theo- ry of curved deformable interfaces in solids at equilib- rium[J]. Philosophical Magazine A: Physics of Con densed Matter, Structure, Defects and Mechanical Properties,1998,78(5) :1093 -1109.
  • 7Duan H L,Wang J,Huang Z P,Karihaloo B L. Size dependent effective elastic constants of solids contai- ning nano-inhomogeneities with interface stress [J]. Journal of the Mechanics and Physics of Solids,2005, 53(7):1574- 1596.
  • 8He L H, Li Z R. Impact of surface stress on stress concentration[J]. International Journal of Solids and Structures, 2006,43 (20) : 6208-6219.
  • 9Lira C W, Li Z R, He L H. Size dependent, non-uni- form elastic field inside a nano-scale spherical inclu- sion due to interface stress[J]. International Journal of Solids and Structures, 2006,43 (17) : 5055-5065.
  • 10Chen T Y. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocompos- ites with interface effects[J]. Acta Mechanica, 2008, 196(3 4) :205-217.

二级参考文献110

  • 1魏悦广,白以龙,王学峥,武晓雷.Theoretical and experimental researches of size effect in micro-indentation test[J].Science China Mathematics,2001,44(1):74-82. 被引量:9
  • 2Chou TC, Ling TR, Yang MC, et al. Micro and nano scale metal oxide hollow particles produced by spray preciptltation in a liquid-liquid system. Materials Science and Engineering A, 2003, 359(1-2): 24-30.
  • 3Duan HL, Wang J, Huang ZP, et al. Size-dependent effective elastic constants of solids containing nano- inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1574-1596.
  • 4Gurtin ME, Murdoch AI. Surface stress in solids. International Journal of Solids and Structures, 1978, 14(6): 431-440.
  • 5Sharma P, Ganti S. Size-dependent Eshelby's tensor for embedded nano-inclusion incorporating surface/interface. Journal of Applied Mechanics, 2004, 71(5): 663-671.
  • 6Sharma P, Ganti S, Bhate N. Effect of surfaces on the sizedependent elastic state of nano-inhomogeneities. Applied Physics Letters, 2003, 82(4): 535-537.
  • 7Dingreville R, Qu J, Cherkaoui M. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1827-1854.
  • 8Yang FQ. Size-dependent effective modulus of elastic composite materials: Spherical nacocavities at dilute concentrations. Journal of Applied Physics, 2004, 95(7): 3516-3520.
  • 9Lim CW, Li ZR, He LH. Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. International Journal of Solids and Structures, 2006, 43(17): 5055-5065.
  • 10Duan HL, Wang J, Huang ZP, et al. Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society of London A, 2005, 461(2062): 3335-3353.

共引文献28

同被引文献5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部