期刊文献+

旋转磁光光纤光栅的磁圆相关损耗特性研究

Research on Magnetically-Induced Circular-Polarization Dependent Loss of Spun Magneto-Optical Fiber Bragg Gratings
原文传递
导出
摘要 采用耦合模微扰理论推导了旋转磁光布拉格光纤光栅(MFBG)的耦合模方程,利用打靶法数值分析了旋转导致的折射率变化对光栅光谱旁峰的影响,得到了与文献一致的结果。提出"磁圆相关损耗"的概念,并用于分析旋转磁光光纤光栅的磁场敏感性。研究表明,高速旋转(或各向同性)MFBG的磁圆相关损耗特性具有最佳的磁场敏感性;而适当低速旋转的MFBG可获得更高的磁圆相关损耗峰值,有助于提高光栅磁场敏感性的测量精度。与"偏振相关损耗"方法相比,"磁圆相关损耗"方法对线双折射的依赖性更小,理论分析也更简便。 According to the coupled-mode perturbation theory, the coupled-mode equations for spun magnetically- induced fiber Bragg gratings (SMFBG) is derived. The dependency of grating spectra on the spun-induced refractive index change is numerically analyzed by using the shooting method and the theoretical results are identical with the experimental data from literatures. The concept of magnetically-induced circular-polarization dependent loss (MCDL) is proposed for analyzing the magnetic field sensitivity of SMFBG. It is shown that the MCDL of high-speed spun (or isotropic) SMFBG possesses optimal magnetic field sensitivity; however, the appropriately low-speed spun MFBG has a larger peak MCDL, which is helpful to magnetic measurement. Compared with the polarization-dependent loss (PDL) method, the MCDL method is less dependent on linear birefringence and is more convenient for theoretical analyses.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第9期8-15,共8页 Laser & Optoelectronics Progress
基金 国家973计划(2011CB301703) 国家自然科学基金(61271166)
关键词 光栅 磁圆相关损耗 打靶法 旋转光纤 gratings magnetically-induced circular-polarization dependent loss shooting method spun fiber
  • 相关文献

参考文献16

  • 1Wu Baojian, Liu Xiao, Qiu Kun. Characteristics of magneto-optic fiber Bragg gratings for use in optical signal processing [J]. Opt Fiber Technol, 2009, 15(2): 165-171.
  • 2WU Bao-Jian LU Xin QIU Kun.Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering[J].Chinese Physics Letters,2010,27(6):225-228. 被引量:4
  • 3邱昆,武保剑,文峰.磁光光纤Bragg光栅中圆偏振光的非线性传输特性[J].物理学报,2009,58(3):1726-1730. 被引量:16
  • 4Wang Yong, Xu Changqing. Bragg gratings in spun fibers[J]. IEEE Photon Technol Lett, 2005, 17(6): 1220-1222.
  • 5J L Arce-Diego, D Pereda-Cubian, M A Muriel. Polarization effects in short- and long-period fiber gratings: a generalized approach [J]. J Opt A: Pure Appl Opt, 2004, 6(3) : S45-S51.
  • 6钱景仁,王许旭.多叶应力区扭转光纤的耦合模理论[J].光学学报,2007,27(3):550-554. 被引量:11
  • 7M S Muller, L Hoffmann, A Sandmair, et al.. Full strain tensor treatment of fiber Bragg grating sensors[J]. IEEE J Quantum Electron., 2009, 45(5): 547-553.
  • 8M S Muller, H J E1-Khozondar, A Bernardini, et al.. Transfer matrix approach to four mode coupling in fiber Bragg gratings[J]. IEEE J Quantum Electron, 2009, 45(9): 1142-1148.
  • 9Y H Ja. Using the shooting method to solve boundary-value problems involving nonlinear coupled-wave equations[J]. Opt Quantum Electron, 1983, 15(6): 529-538.
  • 10T Erdogan. Fiber grating spectra[J].J Lightwave Technol, 1997, 15(8) : 1277-1294.

二级参考文献60

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部