期刊文献+

基于多目标项目检索的无监督用户概貌攻击检测算法 被引量:1

An Unsupervised Algorithm for Detecting User Profile Attack Based on Multi-target Items Retrieval
下载PDF
导出
摘要 为了解决现有的用户概貌攻击检测算法不能对多个受攻击项目同时进行检测的问题,提出一种基于多目标项目检索的无监督用户概貌攻击检测算法.首先,利用双聚类中的Hv-score度量方法,得到对攻击检测有价值的用户概貌集合;然后,在该集合上检索可疑的目标项目,动态生成目标项目树;最后,根据项目的联合评分偏离度,确定受攻击的目标项目并检测出相应的攻击概貌.实验结果表明,该算法无论是检测目标项目还是攻击概貌,均具有较高的精确度. To solve the problem that the existing user profile attack detection algorithms can not successfully detect multiple items un- der attack at the same time, an unsupervised algorithm for detection of user profile attack based on multi-target items retrieval is pro- posed. We first get the valuable user profile sets for attack detection through the Hv-score metric of biclustering algorithm. Then we retrieval the suspicious items in the sets and dynamically generate the target item tree. Finally, we identify the target items under at- tack and their corresponding attack profiles according to the coalitional rating deviation of the items. The experimental results show that the proposed algorithm has higher accuracy in detecting both target items and attack profiles.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第9期2120-2124,共5页 Journal of Chinese Computer Systems
基金 河北省自然科学基金项目(F2011203219 F2013203124)资助 河北省高等学校科学技术研究重点项目(ZH2012028)资助
关键词 用户概貌攻击检测 多目标项目检索 Hv-score度量 目标项目树 attack profile user profile attack detection multi-target items retrieval Hv-score metric target item tree
  • 相关文献

参考文献14

  • 1Lam S, RiedlJ. Shilling recommender systems for fun and profit[Cl. Proceedings of the 13th Conference on World Wide Web, 2004 ,393-402.
  • 2O'Mahony M P, Hurley NJ , Kushmerick N, et al. Collaborative rec?ommendation, a robustness analysis[J]. ACM Transactions on In?ternet Technology,2004,4(4) ,344-377.
  • 3Burke R, Mobasher B, Williams C, et al. Classification features for attack detection in collaborative recommender systems[C]. Pro?ceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ,2006 ,542-547.
  • 4O'Mahony M P, Hurley NJ, Silvestre G C M. Recommender sys?terns: attack types and strategies[C]. Proceedings of the National Conference on Artificial Intelligence,200S :334-339.
  • 5Chirita P, Nejdl W, Zamfir C. Preventing shilling attacks in online recommender systems[C]. Proceedings of the 7th ACM International Workshop on Web Information and Data Management,2005 ,67-74.
  • 6Burke R, Mobasher B , Williams C, et a1. Detecting profile attacking in collaborative recommender systems[CJ. Proceedings of the 8th IEEE International Conference on E-Commerce Technology and the 3rd IEEE International Conference on Enterprise Computing, E?Commerce, and E-Services ,2006.
  • 7Williams C, Mobasher B, Burke R. Defending recommender sys?terns, detection of profile injection attacks[J]. Service Oriented Computing and Applications, 2007 , I ( 3 ) ,157 -170.
  • 8Mehta B, Hofmann T, Fankhauser P. Lies and propaganda, detecting spam users in collaborative filtering[C]. Proceedings of the 12th International Conference on Intelligent User Interfaces,2007: 14-21.
  • 9Neil Hurley, Cheng Z, Zhang M. Statistical attack detection[CJ . Proceedings of the 3rd ACM Conference on Recommender Sys?tems, New York,2009:149-156.
  • 10Famei He,Xuren Wang,Baoxu Liu. Attack detection by rough set theory in recommendation system[CJ. 2010 IEEE International Conference on Granular Computing ,2010:692-695.

二级参考文献21

  • 1MOBASHER B, BURKE R D, BHAUMIK R, et al. Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness [ J]. ACM Transactions on Internet Technology, 2007, 7(4): 23-38.
  • 2CHIRITA P A, NEJDL W, ZAMFIR C. Preventing shilling attacks in online recommender systems [ C]//Proceedings of ACM International Workshop on Web Information and Data Management. New York: ACM Press, 2005:67-74.
  • 3BURKE R, MOBASHER B, WILLIAMS C, et al. Segment-based injection attaeks against collaborative filtering recommender systems [ C]//Proceedings of the Fifth IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2005: 577 - 580.
  • 4Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extension. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 5Li Q, Kim B M. Constructing user profiles for collaborative recommender system. In: Proceedings of the 6th Asia Pacific Web Conference. Hangzhou, China: Springer, 2004. 100--110.
  • 6Herlocker J L, Konstan J A, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1999. 230-237.
  • 7Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE InteI1igent Systems, 2007, 22(3): 56-63.
  • 8Burke R, Mobasher B, Zabicki R, Bhaumik R. Identifying attack models for secure recommendation. In: Proceedings of the Beyond Personalization Workshop on the International Conference on Intelligent User Interfaces. San Diego, USA: ACM Press, 2005. 347-361.
  • 9Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402.
  • 10O'Mahony M, Hurley N J, Kushmerick N, Silvestre G. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377.

共引文献22

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部