期刊文献+

面向用户观点分析的多分类器集成和优化技术 被引量:4

Assembling and Optimizing Multiple Classifiers for User Opinion Analysis
下载PDF
导出
摘要 网络上用户生成的数据(User-Generated Data)富含用户的观点(情感),自动识别这些用户观点对很多的Web应用具有重要的作用,例如推荐系统和电子商务/政务智能系统等.但用户的观点表达通常与领域是相关的,因此对于不同的分析领域,用户难以选择到效果最好的分类器.文中针对用户观点分析问题设计了一个三阶段的多分类器集成框架,在此框架下用户只需指定可用的分类器,系统将自动选择一组最优的分类器组合,将它们的预测结果整合为最终分类结果,同时能够保证分类效果优越于最好的单分类器.针对分类器组的选择过程中面临的组合爆炸问题,文中在考虑分类器的准确度和多样性的基础上,设计了一个贪心算法选择成员分类器,并证明该算法是2-近似的.最后,在不同领域的真实数据集上进行了充分的实验,实验结果验证了文中提出的框架和算法的有效性. The user-generated data is opinion-rich,and automatic identification of user opinion plays an important role for many Web applications like recommendation systems,business and government intelligence.But the user expression on opinion is domain-dependent,and it is difficult for users to select the optimal classifier for a specific domain,especially for the users who are not familiar with the domain.A three phase opinion analysis framework based on ensemble learning is proposed in this paper,by which a set of optimal classifiers are chosen automatically to assemble for generating the final predicted results of unlabeled samples.Due to the problem of combination explosion,an approximation algorithm is proposed based on the classification accuracy and diversity to select the member classifiers,which can be proven to be 2-approximable.At last,extensive experiments are carried out to demonstrate the effectiveness of the proposed framework and algorithms for different domains on real-world datasets.
出处 《计算机学报》 EI CSCD 北大核心 2013年第8期1650-1658,共9页 Chinese Journal of Computers
基金 国家自然科学基金重点项目(61033007) 国家"九七三"重点基础研究发展规划项目基金(2010CB328106) 上海高校知识服务平台-可信物联网产学研联合研发中心(筹)(中心代号:ZF1213) 创新研究群体科学基金(61021004) 教育部新世纪人才支撑计划(NCET-10-0388)资助~~
关键词 观点分析 集成学习 分类准确度 多样性 近似算法 opinion analysis ensemble learning classification accuracy diversity approximation algorithm
  • 相关文献

参考文献22

  • 1Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning teehniques//Proceedings of the Empirical Methods in Natural Language Processing. Philadelphia, USA, 2002:79-86.
  • 2Turney P D. Thumbs up or thumbs down? Semantic orienta- tion applied to unsupervised classification of reviews// Proceedings of the 40th annual meeting on assoeiation for computational linguistics. Philadelphia, USA, 2002: 417-424.
  • 3Tan C, Lee L, Tang J, et al. User-level sentiment analysis incorporating social networks//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 2011:1397-1405.
  • 4Lin Y, Zhang J, Wang X, Zhou A. Sentiment classification via integrating multiple feature presentations/ /Proceedings of the 21st International Conference Companion on World Wide Web. Lyon, French, 2012:569-570.
  • 5Pan S J, Ni X, Sun J T, et al. Cross-domain sentiment clas- sification via spectral feature alignment//Proceedings of the 19th International Conference on World Wide Web. Raleigh, USA, 2010:751-760.
  • 6Xia Y, Wang L, Wong K, Xu M. Sentiment vector space model for lyric-based song sentiment classification. Interna- tional Journal of Computer Processing Of Languages, 2008, 21(4), 133-136.
  • 7Feng S, Wang D, Yu G, et al. Extracting common emotions from blogs based on fine-grained sentiment clustering. Knowledge and Information Systems, 2011, 27(2) : 281-302.
  • 8Barbbosa L, Feng J. Robust sentiment detection on twitter from biased and noise data//Proceedings of the 23rd Interna- tional Conference on Computational Linguistics. Beijing, China, 2010:36-44.
  • 9Jiang. L, Yu M, Zhou M, et al. Target-dependent twitter sentiment elassifieation//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Portland, USA, 2011: 151-160.
  • 10Li S, Zong C. Multi-domain sentiment classification// Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technol- ogies. Columbus, USA, 2008:257-260.

二级参考文献2

共引文献244

同被引文献40

  • 1李鑫滨,陈云强,张淑清.基于LS-SVM多分类器融合决策的混合故障诊断算法[J].振动与冲击,2013,32(19):159-164. 被引量:10
  • 2林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 3Rizwan A K.Framework for Reliable,Real-time Facial Expression Recognition for Low Resolution Images[J].Pattern Recognition Letters,2013,34(10):1159-1168.
  • 4Wan Shaohua.Spontaneous Facial Expression Recognition:A Robust Metric Learning Approach[J].Pattern Recognition,2014,47(5):1859-1868.
  • 5Kotsia I,Pitas I.Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines[J].IEEE Transactions on Image Processing,2007,16(1):172-187.
  • 6Liu Haibin,Zhang Guobao.Multiple Features Extraction and Coordination Using Gabor Wavelet Transformation and Fisher Faces with Application to Facial Expression Recognition[C]//Proceedings of CCPR’10.Chongqing,China:[s.n.],2010:1-5.
  • 7Gu Wenfei,Xiang Cheng,Venkatesh Y V,et al.Facial Expression Recognition Using Radial Encoding of Local Gabor Features and Classifier Synthesis[J].Pattern Recognition,2012,45(1):80-91.
  • 8Maja Pantic, Anton Nijholt, Alex Pentland, et al. Human-Centred Intelligent Human-Computer Interaction (HCI): how far arewe from attaining it [J]. International Journal of Autonomous & Adaptive Communications Systems(S1754-8640), 2008 1(2): 168-187.
  • 9Vinciarelli A, Pantic M, Bourlard H. Social Signal Processing: Survey of an Emerging Domain [J]. Image and Vision Computing(S0262-8856), 2009, 27(12): 1743-1759.
  • 10Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroseience(S0898-929X), 1991, 3(1): 71-86.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部