期刊文献+

一种背景运动视频中运动目标的检测方法

Moving Target Detection Method for Backgroud Motion Video
下载PDF
导出
摘要 针对成像平台运动情况下的运动目标检测问题,提出了一种从特征点稀疏运动场估计到运动分类的目标检测算法。首先通过快速特征点检测与跟踪恢复出图像稀疏运动场;然后依据特征点之间运动一致性关系实现属于同一运动模式的特征点分类,根据分类得到的各组特征点计算场景图像重建误差,剔除重建误差最小的特征点组,实现对前景目标的检测。仿真实验对该算法在复杂场景中检测运动目标的有效性进行了验证。 In order to detect target in the background motion video,an algorithm with sparse motion field estimation,motion classification is proposed. Firstly ,sparse motion field is recovered by fast local feature detection and tracking. The local features that belong to the same motion patteru arc classified acc.ording to their motion consistency. Then,the resulting local feature groups are used to reconstructed scene image,and the fi)reground targets arc identified by getting rid of the group with the least reconstruction error. The proposed method is tested on the dataset of real complex scenarios and its effectiveuess is demonstrated in the results
出处 《电视技术》 北大核心 2013年第17期159-162,共4页 Video Engineering
基金 国家自然科学基金项目(61001049)
关键词 运动目标检测 背景运动视频 运动场估计 特征点分类 moving target detection baekground motion video motion field estimation local feature classification
  • 相关文献

参考文献11

  • 1RADKE R J,ANDRA S,AL-KOFAHI O,et al. hnage change detection algorithms:a systematic survey[ J]. IEEE Transactions on Image Process- ing,2005,14(3 ) :294-307.
  • 2潘翔鹤,赵曙光,柳宗浦,王媛.一种基于梯度图像帧间差分和背景差分的运动目标检测新方法[J].光电子技术,2009,29(1):34-36. 被引量:14
  • 3廖彬,杜明辉,胡金龙.基于梯度场的彩色图像序列光流场算法[J].电视技术,2010,34(9):21-24. 被引量:2
  • 4ZELNIK L,MACHLINE M,IRANI M. Multi-body factorization with un- certainty:revisiting motion consistency[ J ]. International Journal of Com- puter Vision,2006,68 ( 1 ) :27-41.
  • 5ROSTEN E,PORTER R,DRUMMOND T. Faster and better: a machine learning approach to corner detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2010,32 ( 1 ) : 105-119.
  • 6LUCAS B, KANADE T. An iterative image registration technique with an application to stereo vision [ EB/OL ]. [ 2012-11-20 ] . http ://wenku. baidu, com/view/c7876662caaedd3383c4d307, html.
  • 7BIRCHFIELD S T, PUNDLIK S J. Joint tracking of features and edges [ C ]//Proc. IEEE Conference on Computer Vision and Pattern Recogni- tion. [S. l. ] :IEEE Press,2008:l--6.
  • 8BARBER C,DOBKIN D,HUHDANPAA H. The quickhull algorithm for convex hulls [ J ]. ACM Transactions on Mathematical Software, 1996,22 (4) :469-483.
  • 9FISCHLER M, BOLLES R. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartogra- phy [ J ]. Communications of the ACM, 1981,24 (6) :381-395.
  • 10WILLS J, AGARWAL S, BELONGIE S. What went where [ C ]//Proc. IEEE Conference on Computer Vision and Pattern Recognition. [ S. l. ] : IEEE Computer Society,2003 : 37 -44.

二级参考文献12

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2BERTHOLD K P,SCHUNCK B. Determining optical flow[J]. Artificial Intelligence, 1981,17(1-3) :185-203.
  • 3BIMBO A D, NESI P, SANZ J L C. Optical flow computation using extended constraints[J]. IEEE Trans. Image Processing, 1996, 5(5): 720-739.
  • 4GOLLAND P, BRUCKSTEIN A M. Motion from color[J]. Computer Vision and Image Understanding, 1997,68(3):346-362.
  • 5BARRON J, FLEET D, BEAUCHEMIN S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12(2) :43-77.
  • 6ANDREWS R J, LOVELL B C. Color optical flow [J].Workshop on Digital Image Computing, 2003,1 ( 1 ) : 135-139.
  • 7MADJIDI H, NEGAHDARIPOUR S. On robustness and localization accuracy of optical flow computation from color imagery[C]//Proc, the 3D Data Processing, VisuaLization and Transmission (3DPVT'04). Aire-la-Ville, Switzerland: Eurographics Association, 2004: 317- 324.
  • 8ARSHAD J, VENKATESH K S. A new color based optical Now algorithm for environment mapping using a mobile robot [C]//Proc.22nd IEEE International Symposium on Intelligent Control Part.[S.l.]: IEEE Press, 2007, 567-572.
  • 9SIMON D, CLINTON F, SRIDHA S. Improved simultaneous computation of motion detection and optical flow for object tracking [C]//Proc. Digital Image Computing: Techniques and Applications. Melbourne, Australia: IEEE Press, 2009 : 175-182.
  • 10NEGAHDARIPOUR S,YU C H.A generalized brightness change model for computing optical flow [C]// Proc. International Conference on Computer Vision.Berlin, Germany:[s.n.], 1993 : 2-11.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部