期刊文献+

基于投影率预分配的分块式压缩感知

Block compressed sensing based on measurement rate pre-allocation
下载PDF
导出
摘要 分块式压缩感知可以降低运算复杂度及运算存储空间,但是采用相同的压缩投影率进行观测投影,会影响重建图像的整体效果,因为图像所含信息量的分布是不均匀的,图像块之间所含信息量有很大的差别。基于此,提出一种投影率预分配的思想应用于图像的压缩感知。该算法通过计算每个图像块在像素平面的估计熵,来代表每个图像块所含信息量的多少,为每个图像块分配适应于本块信息量的投影率,自适应地改变每个图像块的观测值数量。实验结果表明,与分块压缩感知方法相比,在相同的压缩投影率下可以得到更好的重构质量,或者在保证重构质量的前提下,所需观测值数目更少,降低了存储空间。 Block compressed sensing is proposed to reduce computation quantity and storage space on image compressed sens-ing. There is a large influence on the whole result of reconstruction image to project and observe with the same measurement rate on every image block, because the distribution of image information is uneven, it is very different between blocks on infor- mation quantity. Based on these, a idea of measurement rate pre-allocation is proposed to apply to the image compressed sens- ing. The algorithm calculates every block entropy which stands for the number of information quantity in the pixel plane. Then every block will be allocated a measurement rate which matches its number of information quantity based on the power value, to change adaptively the observation number of every block. Experimental results show that the proposed method can improve the precision of reconstruction in the same measurement rate or reduce the storage space with the less observation number in the same precision of the reconstruction.
出处 《计算机工程与应用》 CSCD 2013年第17期178-181,229,共5页 Computer Engineering and Applications
基金 国家自然科学基金青年基金项目(No.61102069) 江苏省自然科学基金面上项目(No.BK2010498) 中国博士后科学基金(No.20110491421) 南京航空航天大学基本科研业务费专项科研项目资助(No.1011-56XZA11048) 南京航空航天大学青年科技创新基金项目(No.1011-56XAA12027)
关键词 分块式压缩感知 投影率预分配 熵估计 block compressed sensing measurement rate pre-allocation entropy estimation
  • 相关文献

参考文献11

二级参考文献195

  • 1徐华楠,刘哲,胡钢.Contourlet变换及其在图像去噪中的应用研究[J].计算机应用研究,2009,26(2):401-405. 被引量:15
  • 2周有喜,肖江,吴成柯,李云松,相里斌,张金.遥感干涉超光谱图像压缩编码[J].光子学报,2005,34(4):594-597. 被引量:15
  • 3张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 4JPEG 2000 Part I Final Committee Draft Version 1.0. ISO/IEC JTC1/SC29/WG1 N1646R[S]. 2000.
  • 5Taubman D. High performance scalable image compression with EBCOT[J]. IEEE Trans. on Image Processing, 2000, 9 (7) 1158 - 1170.
  • 6Christopoulos C, Askelf J, Larsson M. Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding stanslard[J]. IEEE Signal Processing Letters, 2000, 7 (9) :247 - 249.
  • 7R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 8Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 9Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 10E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.

共引文献858

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部