期刊文献+

基于聚集密度的粒子群多目标优化算法 被引量:6

Multi-objective particle swarm optimization algorithm based on crowding-density
下载PDF
导出
摘要 为了改善粒子群多目标优化算法的分布性,引入了聚集密度以进行精英集的更新。其基本思想为:计算群体中每个个体的聚集密度,根据目标函数值和聚集密度定义一个偏序集,采用比例选择原则依次从偏序集中选择个体,更新精英集。通过数值实验用量化指标研究了新算法的收敛性和分布性,结果表明:新算法的收敛性与常规粒子群多目标优化算法相当,但分布性有了明显的提高。 In order to improve the distribution of multi-objective PSO algorithm, crowding-density is introduced for the update of elite set. The basic idea is: the crowding-density of each individual in the group is calculated, and then a partial order set is set up according to the objective function value and crowding-density. Individuals are selected from the partial order set according to the principle of proportional selection, and the elite set is updated. The convergence and distribution of improved algorithm are studied by means of numerical experiments, and results show that the convergence of improved algorithm is roughly equal with the conventional multi-objective particle swarm optimization algorithm, but the distribution of improved algorithm has been significantly improved.
作者 杨虎 许峰
出处 《计算机工程与应用》 CSCD 2013年第17期190-194,共5页 Computer Engineering and Applications
基金 安徽省教育厅自然科学基金(No.2010kb236)
关键词 多目标优化 粒子群优化算法 聚集密度 分布性 multi-objective optimization Particle Swarm Optimization(PSO) crowding-density distribution
  • 相关文献

参考文献15

  • 1Pareto V.Cours economic politique,volume I and II[M].[S.1.]: Librairie Droz, 1896.
  • 2Zitaler E.Evolutionary algorithms for multi-objective optimi- zation: methods and applications[D].Zurich: Swiss Federal Insti- tute of Technology, 1999.
  • 3Kennedy J, Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks, 1995.
  • 4Li X.A non-dominated sorting particle swarm optimizer for multi-objective optimization[C]//Proc of the Genetic and Evo- lutionary Computation Conf.Berlin:Springer-Verlag,2003:37-48.
  • 5Coello C C A, Pulido G T, Lechuga M S.Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computations,2004,8(3):256-279.
  • 6Sierra M R, Coello C C A.Impmving PSO-based multi-objective optimization using crowding,mutation and e-dominance[C]// Proc of the 3rd Int'l Conf Evolutionary Multi-Criterion Opti- mization.Berlin: Springer-Verlag, 2005 : 505-519.
  • 7Abido M A.Two level of non-dominated solutions approach to multiobjective particle swarm optimization[C]//Proc of the Genetic and Evolutionary Computation Conf.New York: ACM Press, 2007 : 726-733.
  • 8Korndu P, Das S, Welch S M.Multi-objective hybrid PSO using p-fuzzy dominance[C]//Proc of the Genetic and Evo- lutionary Computation Conf.New York: ACM Press, 2007: 853-860.
  • 9Veldhuizen D A, Lamont G B.Evolutionary computation and convergence to a Pareto front[C]//Late Breaking Papers at the Genetic Programming 1998 Conference, 1998:221-228.
  • 10Coello C C A.Evolutionary algorithms for solving muli- objective problems[M].[S.1.]:Kluwer Academic,2002.

二级参考文献37

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:54
  • 3李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 4郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 5Coello Coello C A.A Comprehensive survey of evolutionary-based multi-bjective optimization,techniques[J].Knowledge and Information Systems, 1999,1 ( 3 ) : 269-308.
  • 6Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithm[D].Vanderbilt University, 1984.
  • 7Kenedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks,1995.
  • 8Coello Coello C A,Lechuga M S.MOPSO: A proposal for multiple objective particle swarm optimization[C]//IEEE Congress on Evolutionary Computation(CEC 2002),Honolulu,Hawaii,USA,2002:1051- 1056.
  • 9Coello Coello C A,Pulido G T,Lechuga M S.Handling muhiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Comoutation, 2004: 8 ( 3 ) : 256-279.
  • 10Deb K,Pratap A,Agarwal S,et al.A fast and elitist muhiobjective genetic algorithms:NSGA Ⅱ[J].IEEE Trans on Evolutionary Computation,2002;6(2): 182-197.

共引文献81

同被引文献50

  • 1刘若辰,杜海峰,焦李成.基于柯西变异的免疫单克隆策略[J].西安电子科技大学学报,2004,31(4):551-556. 被引量:9
  • 2李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:54
  • 3唐秋华,席忠民,陈平和,严运兵.高效精准混装作业调度策略研究[J].中国机械工程,2007,18(9):1108-1111. 被引量:6
  • 4尚荣华,焦李成,公茂果,马文萍.免疫克隆算法求解动态多目标优化问题[J].软件学报,2007,18(11):2700-2711. 被引量:32
  • 5JOHN B K. A comparison between the VERT program and other methods of project duration estimation[J]. Man- agement Science, 1987,15(2) :129-134.
  • 6EBERHART RC, SHI YAN. Tracking an optimizing dy- namic systems with particle swarm[C]//IEEE Congress on Evolutionary Computation. 2001 : 94-100.
  • 7HU XIANG, EBERHART. Multi-objective optimization using dynamic neighborhood particle swarm optimization [C]/flEEE Proceedings of the 2002 Congress on Evolu- tionary Computation. 2002 : 185-190.
  • 8MOSTAGHIM S, TEICH J. Strategies for finding good local guides in multi-objective particle swarm optimiza- tion[C]//IEEE Swarm Intelligence Symposium. 2003 : 26- 33.
  • 9COELLO M, PULIDO C, LECHUNGA G. Handling mul-tiple objectives with particle swarm optimization[C]// IEEE Transactions on Evolutionary Computation. 2004: 256-279.
  • 10CLERE MAND KENNEDY J. THE. Particle swarm: ex- plosion, stability and convergence in a multi-dimensional complex space[C]//IEEE Transactions on Evolution Com- putation. 2002 : 68-73.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部