期刊文献+

DFA在海杂波标度特性分析及目标检测中的应用 被引量:2

Application of DFA to Scaling Property Analysis of Sea Clutter and Target Detection
下载PDF
导出
摘要 采用消除趋势波动分析(DFA)方法,研究了非平稳海杂波的标度特性及其参数表征问题,并提出了一种基于标度特性差异的目标检测算法。首先,在海杂波建模为分数布朗运动模型的基础上,对比分析了DFA和波动分析(FA)得出的标度特性,并初步解释了交叉标度现象出现的机理。然后,在假定相邻尺度范围内海杂波与理想分形模型相吻合的前提下,引入分段标度指数来表征海杂波标度特性随尺度的变化关系,分析结果表明,在特定的尺度范围内该参数可以有效区分目标单元与海杂波单元。为此,以该尺度范围内的分段标度指数均值为检验统计量设计了一种新的目标检测算法,并对尺度区间范围的选取、检测性能等问题进行了分析。实测数据中的检测性能证实了检测算法的有效性。 The detrended fluctuation analysis(DFA) method is adopted to research the scaling property and parametric representation problem of non-stationary sea clutter,and a target detection algorithm is presented based on diversity of scaling property.First,the scaling property derived from DFA and fluctuation analysis(FA) is analyzed with comparison on the basis that sea clutter is modeled as Fractional Brownian Motion(FBM).A basic interpretation is given to the scaling crossover phenomenon in DFA.Then,the concept of segment generalized Hurst exponent is introduced to express the changing pattern of scaling property with scales,on the premise that sea clutter complies with ideal fractal model in adjacent scale range.Analysis results show that this parameter can effectively distinguish between target bins and sea clutter bins on a specified scale range.As a result,a new target detection algorithm is put forward with the mean of segment generalized Hurst exponent in such scale range as detection statistics.Such problems as the choice of this scale range,detection performance are also analyzed.The detection performance with real sea clutter justified the effectiveness of the algorithm.
出处 《信号处理》 CSCD 北大核心 2013年第7期830-837,共8页 Journal of Signal Processing
基金 国家自然科学基金资助项目(No.61179017 61201445)
关键词 海杂波 非平稳性 消除趋势波动分析 标度特性 目标检测 Sea clutter Non-stationary Detrended fluctuation analysis Scaling property Target detection
  • 相关文献

参考文献17

  • 1Conte E, Maio A D, Galdi C. Statistical analysis of real clutter at different range resolutions [ J ]. IEEE Trans. on Aerospace and Electronic Systems, 2004, 40(3): 903-918.
  • 2Anastassopoulos V, Lampropoulos G A, Drosopoulos A. High resolution radar clutter statistics [ J ]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35 ( 1 ) : 43- 60.
  • 3扈罗全,林乐科,朱洪波.三种重拖尾分布海杂波的比较与分析[J].电波科学学报,2007,22(6):1061-1067. 被引量:10
  • 4Dinesh R, Jeffrey K. Adaptive radar detection in doubly nonstationary autoregressive doppler spread clutter [ J ]. IEEE Trans. on Aerospace and Electronic Systems, 2009, 45(2) : 484-497.
  • 5Mafia G, Pietro S, Gini F, et al. Impact of Sea Clutter Nonstationarity on Disturbance Covariance Matrix Estima- tion and CFAR Detector Performance [ J ]. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (3) : 1502-1513.
  • 6Hu J, Gao J B, Posner F L, et al. Target detection with- in sea clutter: A comparative study by fractal scaling ana- lyses[J]. Fraetals, 2006, 14(3) :187-204.
  • 7关键,刘宁波,张建,宋杰.基于LGF的海杂波中微弱目标检测方法[J].信号处理,2010,26(1):69-73. 被引量:10
  • 8Hu Jing, Tung Wen-wen, Gao Jian-bo. Detection of low observable targets within sea clutter by structure function based multifractal analysis [ J ]. IEEE Transactions on Antenna and Propagation, 2006, 54( 1 ) : 136-143.
  • 9Guan Jian, Liu Ning-bo, Zhang Jian, et al. Muhifractal correlation characteristic for radar detecting low-observa- ble target in sea clutter [ J ]. Signal Processing, 2010, 90 (2):523-535.
  • 10姜斌,王宏强,黎湘,郭桂蓉.S波段雷达实测海杂波混沌分形特性分析[J].电子与信息学报,2007,29(8):1809-1812. 被引量:17

二级参考文献74

共引文献60

同被引文献24

  • 1王红光,康士峰,张忠治.海杂波的分数布朗运动模型及其应用[J].现代雷达,2005,27(11):58-62. 被引量:8
  • 2姜斌,王宏强,付耀文,黎湘,郭桂蓉.基于LS-SVM的海杂波混沌预测[J].自然科学进展,2007,17(3):415-420. 被引量:11
  • 3姜斌,王宏强,黎湘,郭桂蓉.S波段雷达实测海杂波混沌分形特性分析[J].电子与信息学报,2007,29(8):1809-1812. 被引量:17
  • 4Du G. Detection of sea-surface radar targets based on fractal model[J]. Electronics Letters, 2004, 40(14): 906-907.
  • 5Peltier R F and V6hel J L. Multifractional Brownioal motion: definition and preliminary results[R]. INRIA Research Report No.2645, France: Rocquencourt, 1995.
  • 6Roux D, Jaffard S, and Benassi A. Elliptic Ganssian random processes[J]. Revista Matem6tica Iberoamerieana, 1997, 13(1): 19-90.
  • 7Bianchi S. Pathwise identification of the memory function of multifractionaI Brownian motion with application to finance[J]. International Journal of Theoretical and Applied Finance, 2005, 8(2): 255-281.
  • 8Maragos P and Sun F K. Measuring the fractal dimension of signals: morphological covers and iterative optimization[J]. IEEE Transactions on Signal Processing, 1993, 41(1): 108-121.
  • 9Hu Jing, GEm Jian-bo, Posner F L, et al. Target detection within sea clutter: a comparative study by fractal scaling analyses[J]. Fractals, 2006, 14(3): 187-204.
  • 10盛文,任吉.高频雷达海杂波的多重分形建模方法研究[J].电波科学学报,2011,26(5):983-989. 被引量:8

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部