期刊文献+

相干分布源DOA与角度扩展估计求根算法 被引量:1

Estimation of DOA and angular spread for coherently distributed sources using polynomials rooting
下载PDF
导出
摘要 论文提出了一种具有低复杂度的相干分布源波达方向和角度扩展估计算法。该算法将点源模型中的求根MUSIC算法推广应用至分布源模型。利用空间频率下的相干分布源广义方向矢量可以表示成参数去耦形式的结构特点,并根据相干分布源的角信号密度函数,利用Taylor展开得到参数估计的多项式求根形式,然后通过交替迭代的求根方法得到分布源的中心波达方向和角度扩展的估计值。该算法参数估计性能与DSPE算法相当,其计算复杂度要远小于DSPE算法,并且适用于不同分布类型的相干分布源同时存在的情况。计算机仿真验证了算法的性能。 The paper proposes a low-complexity direction of arrival (DOA) and angular spread estimation algorithm for coherently distributed sources. The proposed algorithm extend Root-MUSIC algorithm of the point sources to the diffuse source localization. According to the decoupled character of the spatial frequency model of generalized steering vector and the deterministic angular weighting function of the coherently sources, the rooting polynomials can be ob- tained utilizing Taylor approximation, and then the nominal DOAs and angular spreads can be estimated by iterative Root-MUSIC-like estimator. Without spectrum searching, the proposed algorithm provides a sufficiently good estima- tion accuracy as well as computational simplicity for estimating the nominal DOAs and angular spread. In addition, it can be applied to the scenario with multiple sources that may have angular distribution shapes. Simulation results illus-trate the performance of the method.
作者 姚晖 吴瑛
出处 《信号处理》 CSCD 北大核心 2013年第8期1058-1063,共6页 Journal of Signal Processing
关键词 相干分布源 波达方向 角度扩展 求根算法 低复杂度 Coherently distributed sources Direction of arrival Angular spread Rooting method Low-complexity
  • 相关文献

参考文献10

  • 1Valaee S, Champagne B, Kabal P. Parametric localiza- tion of distributed sources[ J ]. IEEE Transactions on Sig- nal Processing, 1995, 43 (9) : 2144-2153.
  • 2Zheng Z, Li G J. Decoupled estimation if the central azi- muth and elevation for an incoherently distributed source [J]. Energy Procedia, 2011, 13:4680-4687.
  • 3Han Y H, Wang J K, Zhao Q, Gao J. An efficient DOA tracking algorithm for coherently distributed source [ C ]. International Symposium on Communications and Informa- tion Technologies, 2011 : 493-496.
  • 4Zoubir A, Wang Y, Charge P. The generalized beam- forming techniques for estimating the coherently distribu- ted sources [C]. Proc. 8th European Conf. Wireless Technology, Paris, October 2005 : 157-160.
  • 5Shahbazpanahi S, Valaee S, and Bastani M H. Distribu- ted source localization using ESPRIT algorithm[ J ]. IEEE Transactions on Signal Processing, 2001,49(10) : 2169- 2178.
  • 6Wan Q, Peng Y N. Low-complexity estimator for four-di- mensional parameters under a reparameterised distributed source model [ J ]. IEE Proc.-Radar, Sonar Navig.. 2001, 148(6) :313-317.
  • 7Zheng Z, Li G J, Teng Y L. 2D DOA estimator for multi- ple coherently distributed sources using modified propaga- tor[J]. Circuits System Signal Process, 2012, 31: 255-270.
  • 8Pesavento M, Gershman A B, Haardt M. Unitary root- MUSIC with a real-valued eigendecomposition: a theoreti- cal and experimental performance study[J]. IEEE Trans-actions on Signal Processing, 2000, 48 ( 5 ) : 1306-1314.
  • 9Gershman A B, Rubsamen M, Pesavento M. One-and two-dimensional direction-of-arrival estimation: An over- view of search-free techniques [ J ]. Signal Processing, 2010, 90(5 ) :1338-1349.
  • 10Kassis C E, Picheral J, Mokbel C. Advantages of uni- form arrays using root-MUSIC [J]. Signal Processing, 2010, 90(2):689-695.

同被引文献18

  • 1Schmidt R.Multiple emitter location and signal parameter estimation[J].IEEE Trans.Antennas Propag,1986,34(5):276-280.Reprinted from Proc.RADC Spectr.Es- timation Workshop,Rome,NY,1979.
  • 2Weng Z Y,Djuric'P M.A search-free DOA estimation algorithm for coprime arrays[J].Digital Signal Process- ing,2014,24:27-33.
  • 3Suleiman,Wassim,Parvazi,et al.Search-free decentral- ized direction-of-arrival estimation using common roots for non-coherent partly calibrated arrays[C]//2014 IEEE International Conference on Acoustics,Speech,and Sig- nal Processing,2014:2292-2296.
  • 4Zheng G M.Beamspace root-MUSIC algorithm for joint DOD DOA estimation in bistatic MIMO radar[J].Wire- less Personal Communications,2014,75(4),1879-1889.
  • 5Goossens R,Rogier H,Werbrouck S.UCA root-MUSIC with sparse uniform circular arrays[J].IEEE Transac- tions on Signal Processing,2008,56(8):4095-4099.
  • 6Belloni F,Richter A,Koivunen V.DOA estimation via manifold separation for arbitrary array structures[J].IEEE Transactions on Signal Processing,2007,55(10);4800-4810.
  • 7Michael R,Alex B.Direction-of-arrival estimation for nonuniform sensor arrays:from manifold separation to Fourier domain MUSIC methods[J].IEEE Transactions on Signal Processing,2009,57(2):588-599.
  • 8Hirata,Kazufumi.A Fast Computation Algorithm for DOA Evaluation Function of MUSIC Algorithm in Circular Ar- ray Antennas[J].Electronics and Communication in Ja- pan,Part I:Communications,2001,84(8):62-69.
  • 9Doron M A,Doron E.Wavefield modeling and array pro- cessing,Part I-Spatial sampling[J].IEEE Transactions on Signal Processing,1994,42(10):2549-2559.
  • 10Doron M A,Doron E,Weiss A J.Coherent wideband processing for arbitrary array geometry[J].IEEE Trans- actions on Signal Processing,1993,41(1):414-417.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部