期刊文献+

超滤膜为分隔膜的双室微生物燃料电池的产电特性

Electricity generation by dual-chamber microbial fuel cells using ultrafiltration membrane as demarcation membrane
下载PDF
导出
摘要 针对分隔膜对微生物燃料电池产电特性的影响问题,采用截留分子质量(MWCO)分别为4 ku、10 ku、30 ku和100 ku的4种不同超滤膜(UF)作为分隔膜材料进行了基础研究.通过SEM观察,各反应器阳极表面附着形态相同的产电微生物.阶段运行结果表明:4种UF膜中库伦效率最大为4.15%,功率密度最大为113.3mW/m3,内阻随截留分子质量的增大依次为UF(4 ku)211Ω,UF(10 ku)297Ω,UF(30 ku)157Ω,UF(100ku)241Ω;产电结束后各超滤膜MFC的阳极室出水COD均低于80 mg/L,对COD去除率均达到85%以上,出水pH几乎保持不变;采用聚醚砜材质的UF膜(30 ku)功率密度最大,内阻最小,产电性能最为优良. The electricity production of four different uhrafihration (UF) membranes with molecular weight cut off (MWCO) 4 ku, 10 ku, 30 ku, 100 ku is analyzed, which is used respectively as diaphragm material in the dual-chamber microbial fuel cells (MFCs). Through the observation by scanning electron microscopy (SEM), it is found that electricigens with similar shape attach to the anode surface of reactor. The staged runing results show that the best coulombic efficiency and power density are 4.15% and 113.3 mW/m3 respectively. And with the increase of MWCO, the internal resistance is 211 12 by using UF (4 ku), followed by UF (10 ku) 297 12, UF (30 ku) 157 12 and UF ( 100 ku) 241 ft. After the electricity production, the effluent COD in anode chamber of UF membranes MFC is below 80 mg/L, COD removal efficiency reaches 85%, and the effluent pH remains almost unchanged. In all, UF (30 ku) made of polyethersulfone has the maximum power density, minimum internal resistance, and the most excellent performance of electricity production.
出处 《天津工业大学学报》 CAS 北大核心 2013年第4期1-5,共5页 Journal of Tiangong University
基金 水体污染控制与治理重大专项(2011ZX07317-001) 天津市科技兴海项目(KJXH2012-5) 天津工业大学研究生科技创新活动计划(12115)
关键词 微生物燃料电池(MFC) 超滤膜 内阻 功率密度 microbial fuel cells ultrafiltration membranes resistance power density
  • 相关文献

参考文献20

二级参考文献176

  • 1张玲,梁鹏,黄霞,郑旭煦.生物阴极型微生物燃料电池研究进展[J].环境科学与技术,2010,33(11):110-114. 被引量:8
  • 2莫志军,胡林会,朱新坚.燃料电池广义内阻的在线测量[J].电源技术,2005,29(2):95-98. 被引量:13
  • 3薛爱群,贾锋,齐顺章.细菌总蛋白含量测定方法的改进[J].微生物学通报,1994,21(1):58-59. 被引量:11
  • 4LOVLEY D R. Microbial fuel cells: novel microbial physiologies and engineering approaches [ J ]. Curt Opin Biotech, 2006, 17 ( 3 ) :327-332.
  • 5DAVIS F,SEAMUS P J H. Biofuel cells - recent advances and applications [ J]. Biosens Bioelectron ,2007,22 (7) : 1224-1235.
  • 6AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents nsing stacked microbial fuel cells [ J ]. Environ Sci Technol, 2006,40 ( 10 ) : 3388-3394.
  • 7LEMUEL B W ,CHING H S,JAMES F C. Bioelectrochemical fuel cells [ J ]. Enzyme Microb Technol, 1982,4 ( 3 ) : 137-142.
  • 8REIMERS C E, TENDER L M, FERTIG S, et al. Harvesting energy from the marine sediment-water interface[ J]. Environ Sci Technol,2001,35 ( 1 ) : 192-195.
  • 9KIM H J,PARK H S, HYUN M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens[ J ]. Enzyme Microb Technol,2002,30 ( 2 ) : 145-152.
  • 10GIL G C,CHANG I S, KIM B H, et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell [ J]. Biosens Bioelectron,2003,18 (4) :327-334.

共引文献293

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部