期刊文献+

一类具有免疫损害项的带时滞的病毒感染模型分析

Analysis of a delayed viral infection model with an immune impairment term
下载PDF
导出
摘要 对一类具有免疫损害项的带时滞的病毒感染模型进行了动力学分析,研究未感染平衡点的全局稳定性,并给出感染平衡点产生Hopf分岔的充分条件;数值模拟验证了主要分析结果,从而解释了免疫反应的复杂性. The dynamic behavior of a delayed viral infection model with an immune impairment term is analyzed. The globally stability of the viral free equilibrium is investigated, and the sufficient conditions of the existence of Hopf bifurcation around infected equilibrium are studied. Numerical simulations are carried out to illustrate the main results, which can explain the complexity of immune response,
出处 《天津工业大学学报》 CAS 北大核心 2013年第4期79-84,共6页 Journal of Tiangong University
基金 国家自然科学基金资助项目(11102132)
关键词 免疫损害 时滞 稳定性 HOPF分岔 病毒感染模型 immune impairment time delay stability Hopf bifurcation viral infection model
  • 相关文献

参考文献16

  • 1WANG Y, ZHOU Y, WU J, et al. Oscillatory viral dynamics in a delayed HIV pathogenesis model [J]. Math Biosci,2009, 219:104-12.
  • 2WODARZ D, KRAKAUER D C. Defining CTL-induced pathol- ogy: Implications for HIV[J]. Virology,2000,274:94-104.
  • 3BARTHOLDY C, CHRISTENSEN J P, WODARZ D, et al. Persistent virus infection despite chronic cytotoxic T-lympho- cyte activa-tion in Gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus[J], J Virol, 2000,74 : 10304-10311.
  • 4WODARZ D, CHRISTENSEN J P, THOMSEN A R. The im- portance of lyric and non-lytic immune response in virus infec- tions[J]. Trends Immunol, 2002,23:194-200.
  • 5WANG K, WANG W, PANG H, et al. Complex dynamic be- havior in a viral model with delayed immune response [J]. Physica D, 2007,226 : 197-208.
  • 6DE BOER R J, PEREESON A S. Towards a general function describing T cell proliferation [J]. J Theoret Biol, 1995,175 567-576.
  • 7DE BOER R J, PERELSON A S. Target cell limited and im- mune control models of HIV infection: A comparison[J]. Theo- ret Biol, 1998,190:201-214.
  • 8CANABARRO A A, GLEERIA I M, LYRA M L. Periodic so- lutions and chaos in a non-linear model for the delayed cellu- lar immune response[J]. Physica A, 2004,34( 2 ) : 234-241.
  • 9王永昭,黄东卫,张双德,刘鸿杰.一类具有免疫时滞的HIV感染模型分析[J].天津工业大学学报,2011,30(3):76-80. 被引量:2
  • 10SONG X, WANG S, ZHOU X. Stability and Hopf bifurcation for a viral infection model with delayed non-lytic immune re- sponse[J]. J Appl Math Comput, 2010,32 : 251-265.

二级参考文献16

  • 1NOWAK M A, BANGHAM G R M. Population dynamics of immune response to perslstent virus[J]. J Virology, 1996,272: 74-79.
  • 2NOWAK M A, MAY R M. Mathematical biology of HIV in- fection:Antigenic variation and diversity threshold[J]. Math Biosci, 1991,106: 1-21.
  • 3WANG K, WANG W, LIU X. Global stability in a viral infec- tion model with lytic and non-lytic immune response in viral infections [J]. J Comput Appl Math, 2007,51 : 1593-1610.
  • 4BARTHOLDY C, CHRISTENSEN J P, WODARZ D, et al. Persistent virus infection despite chronic cytotoxic T-lympho- cyte activation in Gamma interferon-deft cient mice infected with lymphocytic choriomeningitis virus[J]. J Virol, 2000, 10304-10311.
  • 5WODARZ D, CHRISTENSEN J P, THOMSEN A R. The im- portance of lytic and nol-ytic immune responses in virus infec- tions [J]. Trends Immunol, 2002,23:194-200.
  • 6XIE Q, HUANG D, Z HANG S, et al. Analysis of a viral in- fection model with delayed immune response[J]. Applied Mat- hematical Modelling, 2010, 34: 2388-2395.
  • 7WANG K, WANG W, PANG H, et al. Complex dynamic be- havior in a viral model with delayed immune response [J]. Physica D, 2007, 226: 197-208.
  • 8CANABARRO A A, GLERIA I M, LYRAM L. Periodic solu- tions and chaos in a non-linear model for the delayed cellular immune response [J]. Physica A, 2004,342 : 234-241.
  • 9WANG Y, ZHOU Y, WU J, et al. Oscillatory viral dnamics in a delayed HIV pathogenesis mode [J]. Math Biosci, 2009, 219.104-112.
  • 10DE LEENHEER P, SMITH H L. Virus dynamics:A global analysis[J]. SIAM J Appl Math, 2003,63 : 1313-1327.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部