期刊文献+

上三角算子矩阵Weyl型定理的稳定性判定

Judgement on stability of Weyl′s theorem for the upper triangular operator matrices
下载PDF
导出
摘要 称算子T满足a-Browder定理,若σa(T)\σea(T)■π00a(T),其中σa(T)和σea(T)分别表示算子T的逼近点谱和本质逼近点谱,和π00a(T)={λ∈isoσa(T),0<dimN(T-λI)<∞}.若σa(T)\σea(T)=π00a(T),则称算子T满足a-Weyl定理.利用上三角算子矩阵中主对角线上的算子的半Fredholm域的特征,研究上三角算子矩阵a-Browder定理和a-Weyl定理在紧摄动下的稳定性. An operator T is said to satisfy a-Browder′s theorem if σa(T)/σea(T)■π00a(T),where σa(T) and σea(T) denote the approximate point spectrum and the essential approximate point spectrum,respectively,and π00a(T)={λ∈isoσa(T),0dimN(T-λI)∞}.If σa(T)/σea(T)=π00a(T),we say that T satisfies a-Weyl's theorem.In this note,by using the characteristics of semi-Fredholm domain of the diagonal of the upper triangular operator matrix,we investigate the stability of a-Browder's theorem and a-Weyl's theorem for the upper triangular operator matrices under compact perturbations.
出处 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2013年第5期591-597,共7页 Journal of University of Chinese Academy of Sciences
基金 陕西师范大学中央高校基本科研业务费专项资金(GK200901015)资助
关键词 上三角算子矩阵 a-Browder定理 紧摄动 渐近纠缠算子 半Fredholm域 upper triangular operator matrices a-Browder's theorem compact perturbations asymptotic intertwining operator semi-Fredholm domain
  • 相关文献

参考文献9

  • 1Weyl H. (U)ber beschr(a)nkte quadratische Formen,deren Differenz vollstetig ist[J].Rendiconti del Circolo Matematico di Palermo,1909.373-392.
  • 2Harte R,Lee W Y. Another note on Weyl's theorem[J].{H}Transactions of the American Mathematical Socity,1997.2115-2124.
  • 3Rakocev(c)i V. Operators obeying a-Weyl's theorem[J].Revue Roumaine de Mathematique Pures,1989,(10):915-919.
  • 4Rako(c)evi(c) V. On a class of operators[J].Matematicki Vesnik,1985.423-426.
  • 5Lausen K B,Neumann M M. An introduction to local spectral theory[M].New York:Clarendon Press,2000.
  • 6Müller V. Spectral theory of linear operators[M].Berlin:Birhk(a)user Verlag AG,2003.
  • 7Ji Y Q. Quasitriangular + small compact =strongly irreducible[J].{H}Transactions of the American Mathematical Socity,1999,(11):4657-4673.
  • 8Zhu S,Li C G. SVEP and compact perturbations[J].{H}Journal of Mathematical Analysis and Applications,2011,(01):69-75.
  • 9Herrero D A. Approximation of Hilbert space operators:Vol 1[M].Harlow:Longman Scientific and Technical,1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部