摘要
称算子T满足a-Browder定理,若σa(T)\σea(T)■π00a(T),其中σa(T)和σea(T)分别表示算子T的逼近点谱和本质逼近点谱,和π00a(T)={λ∈isoσa(T),0<dimN(T-λI)<∞}.若σa(T)\σea(T)=π00a(T),则称算子T满足a-Weyl定理.利用上三角算子矩阵中主对角线上的算子的半Fredholm域的特征,研究上三角算子矩阵a-Browder定理和a-Weyl定理在紧摄动下的稳定性.
An operator T is said to satisfy a-Browder′s theorem if σa(T)/σea(T)■π00a(T),where σa(T) and σea(T) denote the approximate point spectrum and the essential approximate point spectrum,respectively,and π00a(T)={λ∈isoσa(T),0dimN(T-λI)∞}.If σa(T)/σea(T)=π00a(T),we say that T satisfies a-Weyl's theorem.In this note,by using the characteristics of semi-Fredholm domain of the diagonal of the upper triangular operator matrix,we investigate the stability of a-Browder's theorem and a-Weyl's theorem for the upper triangular operator matrices under compact perturbations.
出处
《中国科学院大学学报(中英文)》
CAS
CSCD
北大核心
2013年第5期591-597,共7页
Journal of University of Chinese Academy of Sciences
基金
陕西师范大学中央高校基本科研业务费专项资金(GK200901015)资助