期刊文献+

渐近伪压缩映象的粘性迭代逼近 被引量:1

Viscosity Iterative Approximation of Asymptotically Pseudocontractive Mapping
下载PDF
导出
摘要 引入渐近伪压缩映象的具误差的两步粘性迭代序列,在Banach空间框架下,通过借助不等式的技巧和方法,得出了渐近伪压缩映象的具误差的两步粘性迭代序列的收敛性及强收敛于其不动点的条件.所得结果改进和推广了现有的结果. The convergence of the two-step viscosity iterative sequences with errors of the asymptotically pseudocontractive mappings and the conditions for the strong convergence to the fixed points are obtained in the banach space by using techniques of inequality.The obtained results can improve and popularise the existing results.
出处 《西安工业大学学报》 CAS 2013年第7期526-529,共4页 Journal of Xi’an Technological University
基金 西安市科技计划项目(CXY1134WL05)
关键词 BANACH空间 渐近伪压缩映象 具误差的粘性迭代序列 不动点 banach space asymptotically pseudocontractive mapping viscosity iterative sequences with errors fixed point
  • 相关文献

参考文献7

二级参考文献17

共引文献4

同被引文献7

  • 1OPIAL Z. Weak Convergence of the Sequence of Suc- cessive Approximations for Nonexpansive Mappings[J].Bull Amer Math Soc,1967,73(4):591.
  • 2MARINO G,XU H K. Weak and Strong Convergence Theorems for Strict Pseudo-Contractions in Hilbert Spaces[J]. J Math Anal Appl, 2007,324 :336.
  • 3YAO Y, LIU Y C, YAO J C. Convergence Theorem for Equilibrium Problem and Fixed Point Problems of Infinite Family of Nonex Pansive Mappings[J]. Fixed Point Theory and Appl,2007(2) :135.
  • 4SHIMOJI K,TAKAHASHI W. Strong Convergence to Common Fixed Points of Infinite Nonexpansive Mappings and Applications[J].Taiwan Residents J Math, 2001,5:387.
  • 5CHANG S S,JOSEPH L H W,CHAN C K. A New Method for Solving Equilibrium Problem Fixed Point Problem and Variational Inequality Problem with Ap- plication to Optimization [J]. Nonlinear Anal.. TMA, 2009,70(9) : 3307.
  • 6SUZUKI T. Strong Convergence of Krasnoselskii and Mann' S Type Sequences for Oneparameter Nonexpansive Semigroups Without Bochner Integrals[J]. J Math Anal Appl, 2005,305 : 227.
  • 7XU H K. Iterative Algorithms for Nonlinear Opera- tors [J]. London Math Soc,2002,66:240.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部