摘要
研究了一类采样数据非线性系统的动态神经网络稳定自适应控制方法 .不同于静态神经网络自适应控制 ,动态神经网络自适应控制中神经网络用于逼近整个采样数据非线性系统 ,而不是动态系统中的非线性分量 .系统的控制律由神经网络系统的动态逆、自适应补偿项和神经变结构鲁棒控制项组成 .神经变结构控制用于保证系统的全局稳定性 ,并加速动态神经网络系统的逼近速度 .证明了动态神经网络自适应控制系统的稳定性 ,并得到了动态神经网络系统的学习算法 .仿真研究表明 。
A stable adaptive control approach using dynamic neural networks(DNN's) has been developed for a class of multi input multi output(MIMO) sampled data nonlinear systems with unknown dynamic nonlinearities. Unlike static NN's (SNN's) to approximate nonlinear components in the dynamic system, DNN's are used to approximate the whole dynamic system. The system control law is composed of the dynamic inversion of the DNN system, adaptive compensation and NN variable structure control(VSC) components. The NN variable structurecontrol is used to guarantee the stability of the controlled system and improve the system dynamic performance. The proof of complete stability and tracking error convergence is given by using Lyapunov stability theory, and the learning algorithm for the DNN system is obtained thereby. Simulations for a two link manipulator show that the stable adaptive control approach using DNN's has a better dynamic performance than that using SNN's.
出处
《自动化学报》
EI
CSCD
北大核心
2000年第6期721-728,共8页
Acta Automatica Sinica
基金
国家高技术"八六三"航天领域青年基金
清华大学信息学院基础创新研究基金资助课题
关键词
动态神经网络
自适应控制
非线性系统
Dynamic neural networks, dynamic inversion, sampled data nonlinear systems, adaptive control, discrete variable structure.