期刊文献+

The Boundedness of Littlewood-Paley Operators with Rough Kernels on Weighted (L^q , L^p )~α (R^n) Spaces 被引量:5

The Boundedness of Littlewood-Paley Operators with Rough Kernels on Weighted (L^q , L^p )~α (R^n) Spaces
下载PDF
导出
摘要 In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞. In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.
出处 《Analysis in Theory and Applications》 2013年第2期135-148,共14页 分析理论与应用(英文刊)
基金 supported in part by National Natural Foundation of China (Grant No. 11161042 and No. 11071250)
关键词 Littlewood-Paley operator weighted amalgam space rough kernel Ap weight. Littlewood-Paley operator, weighted amalgam space, rough kernel, Ap weight.
  • 相关文献

参考文献15

  • 1Bonami, A., Feuto, J. and Fofana, I., Norms inequalities in some subspaces of Morrey space, Preprint.
  • 2Chang, S., Wilson, J. and Wolff, T., Some weighted norm inequalities concerning the Sch6dinger operators, Comment. Math. Helvetici., 60(1985), 217-246.
  • 3Ding, Y., Fan, D. S. and Pan, Y. B., Weighted boundedness for a class of rough Marcinkiewicz integrals, Indiana Univ. Math., 48(1999), 1037-1055.
  • 4Ding, Y. and Xue, Q. Y., Endpoint estimates for commutators of a class of Littlewood-Paley operators, Hokkaido. Math. J., 36(2007), 245-282.
  • 5Dosso, M., Fofana, [. and Sanogo, M., On certaLn subspace of the space (Lq,lP)'X(Aa), PreprLnt.
  • 6Feuto, J., Espace (Lq,LP)c' (G) Sur un Groupe de type Homog~ne et Continuit4 de l'int6grale Fractionnaire, Th6se de Doctorat pr6sent6 ~ l'universit6 de Cocody (Abidjan).
  • 7Feuto, J., Fofana, I. and Koua, K., Espaces de Fonctions Moyenne Fractionnaire Integrables Sur Les Groupes Localement Compacts, Afrika Mat., 15(2003), 73-91.
  • 8Feuto, J., Fofana, I. and Koua, K., Integrable fractional mean functions on spaces of homoge- neous type, Afr. Diaspora J. Math., 9(2010), 8-30.
  • 9Fofana, I., ]~tude d'une Class D'espaces de Fonctions Contenant Les Espaces de Lorentz, Afrika Mat., 2(1988).
  • 10Fournier, J. J. F. and Stewart, J., Amalgams of LP and Lq, Bull. Amer. Math. Soc., 13(1985), 1-21.

同被引文献19

  • 1XUE QingYing,DING Yong.Weighted estimates for the multilinear commutators of the Littlewood-Paley operators[J].Science China Mathematics,2009,52(9):1849-1868. 被引量:8
  • 2Lu Shanzhen and Yang Dachun (Beijing Normal University, China).THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS[J].Analysis in Theory and Applications,1995,11(3):72-94. 被引量:50
  • 3Holland F. Harmonic analysis on amalgams of ff and Iq [J]. Journal of the London Mathematical Society, 1975, 2(3): 295-305.
  • 4Fourier J J F, Stewart J. Amalgams of ff and lq [J]. Bulletin of the American Mathematical Society, 1985, 13(1):1-21.
  • 5Fofana I. ttude d' une class d'espaces de fonctions con- tenant les espaees de lorentz [J ]. Mrika Matematika, 1988, 1(2):29-50.
  • 6Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function [J ]. Transactions of the American Mathe- matical Society, 1972, 165 ( 1 ) : 207-226.
  • 7Garcia-Cuerva J, de Francia J L R. Weighted norm in- equalities and related topics [M ]. Amsterdam :North-Holland, 1985:210-314.
  • 8Gundy R F, Wheeden R L. Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh-Paley series[J]. Studia Mathematica, 1974, 49 (2) : 107-124.
  • 9Duoandikoetxea J. Weighted norm inequalities for homoge- neous singular integrals [J ]. Transactions of the American Mathematical Society, 1993, 336(2) :869-880.
  • 10Duoandikoetxea J. Fourier analysis[M]. Providence, Rhode Island : American Mathematical Society, 2000:143-169.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部