期刊文献+

云自适应遗传算法有能力约束的车辆调度优化 被引量:19

Research on capacitated vehicle routing problem with cloud adaptive genetic algorithm
下载PDF
导出
摘要 针对与车辆调度成本密切相关的运输量和车辆利用率,建立油耗费用和固定费用最小的车辆调度模型。根据车辆调度问题实时性和复杂性的要求,提出云模型理论与遗传算法相结合的云自适应遗传算法,利用云模型云滴的随机性和稳定倾向性改进标准遗传算法中固定设置交叉和变异概率的方式,克服了标准遗传算法搜索速度慢及易早熟的缺陷,设计基于最大保留机制的交叉和变异算子,提高了算法的收敛性和鲁棒性。最后,结合算例对模型和算法的有效性进行验证。 Aiming at traffic volume and vehicle utilization,which are closely related to the cost of vehicle traffic,a vehicle scheduling model with the minimum fuel cost and fixed cost is established. According to the requirement of real-time and complicacy of the vehicle scheduling,a cloud adaptive genetic algorithm is proposed by combining cloud model theory with genetic algorithm. The way of the fixed set crossover and mutation probability in the standard genetic algorithm is improved by using the randomness and bias stability of the cloud droplet cloud model. Defects of slow search and easy precocious of the standard genetic algorithm is overcome. The convergence and robustness of the algorithm was improved by crossover and mutation that was designed based on maximum retention mechanism. Finally,an example authenticated the effectiveness of the model and algorithm.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第8期40-46,共7页 Journal of Chongqing University
基金 重庆市决策咨询与管理创新计划资助项目(CSTC2013JCCXA0109) 工业与信息化部软科学资助项目(2013-R-10-2) 重庆邮电大学社会科学基金资助项目(K2012-95) 国家社会科学基金资助项目(11BGL006)
关键词 车辆调度问题 标准遗传算法 云遗传算法 云模型 vehicle routing problem standard genetic algorithm cloud genetic algorithm cloud model
  • 相关文献

参考文献19

二级参考文献104

共引文献421

同被引文献160

引证文献19

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部