期刊文献+

神经元轴突电刺激响应的有限元数值模拟 被引量:2

Finite element modeling of current stimulating response on the nerve axon
下载PDF
导出
摘要 为了研究神经元轴突的微观生理电传导特性,建立了神经元轴突的三维有限元模型,通过数值计算模拟神经元轴突对电刺激的动态响应。建立海马神经元轴突的三维几何模型并指定其生物物理参数,根据Hodgkin-Huxley方程和Maxwell方程,建立偏微分方程组,对神经元轴突有限元模型施加不同持续时间和不同脉冲幅度的电流脉冲并求解,获得神经元轴突的三维电势分布和动作电位曲线。数值模拟结果显示,该神经元轴突的静息电位约为-65mV;对模型施加持续时间为2ms,强度0.01A/m2的电流脉冲刺激未产生动作电位,施以(2ms、0.2A/m2),(20ms、0.01A/m2),(20ms、0.2A/m2)脉冲刺激均产生动作电位,峰值分别出现在0.012s、0.017s和0.012s,动作电位幅度约为100mV,持续时间约为2ms。神经元轴突电刺激响应的有限元模拟结果与实验结果吻合,表明所建立的神经元轴突有限元模型及数值模拟方法合理、可靠,为深入研究神经电生理特性提供了基础模型和仿真分析方法。 To investigate the characteristics of microphysiological electrical conduction on nerve cell axon, numerical simulation for the dynamic responses of neuronal axon to electrical stimulation is conducted on a three-dimensional (3D) finite element (FE) model. A 3D geometrical model for a segment of a hippocampal neuron axon is developed and assigned biophysical parameters, then the stimulation pulses of various amplitude and duration are imparted on the FE model of neuronal axon. The combination of Hodgkin- Huxley equations and Maxwell equations are performed to get action potential curve and 3D distribution of electric potential. The simulating results show that the resting potential of nerve axon is --65 mV and no action potential occurred under the stimuli of 2 ms duration and 0.01 A/m2 current intensity, whereas the stimuli of (2 ms, 0.2 A/m2), (20 ms, 0.01 A/m2) and (20 ms, 0.2 A/m2) induced action potentials, and the time arrived at the peak value are 0. 012 s, 0. 017 s and 0. 012 s, respectively. The range of actionpotential is 100 mV and duration is 2 ms. The simulation results agree well with that of the experiment, which indicates that both the FE model of neuronal axon and the simulation analysis method are reliable and may contribute to further study on neural electrophysiology.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第8期151-155,162,共6页 Journal of Chongqing University
基金 国家自然科学基金资助项目(81071232)
关键词 神经元轴突 电刺激响应 有限元模型 数值模拟 动作电位 nerve axon current stimulating response FEM numerical simulation action potential
  • 相关文献

参考文献13

  • 1Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J].Journal of Physiology, 1952,117(4): 500-544.
  • 2Riet A. A continuation toolbox in MATLAB, Master Thesis, Mathematical Institute, Utrecht University[MJ, The Netherlands, 2000.
  • 3Govaerts W. Numerical Continuation of Bifurcations of Limit Cycles in MATLAB[J]. SiamJournal on Scientific Computing, 2005, 27(1):231-252.
  • 4MartinekJ. A Novel approach to simulate Hodgkin?Huxley-like excitation with COMSOL multiphysics[J]. Artificial Organs. 2008, 32(8): 614-619.
  • 5Gray E G. The fine structure of nerve[J]. Comparative Biochemistry and Physiology, 1970: 419-422.
  • 6丁光宏,顾全保,主译.电生理学基础[M].上海:复旦大学出版社,2005,18.
  • 7Hille B. Ionic channels in nerve membranes[J]. '- Progress in Biophysics and Molecular Biology, 1970, 21: 1-32.
  • 8Hille B. Ionic channels of excitable membranes: Current problems and biophysical approaches[J]' Biophysical Society, 1978, 22(2): 283-294.
  • 9Courtney L. Computational modeling of three?dimensional electrodiffusion in biological systems: Application to the node of ranvier[J]. BiophysicalJournal. 2008. 95(6): 2624-2635.
  • 10Noble D. Gamy A, Noble PJ. How the Hodgkin-Huxley equations inspired the cardiac physiome project[J].Journal of Physiology. 2012, 590(11): 2613-2628.

同被引文献20

  • 1Loo C K,Alonzo A,Martin D,et al.Transcranial direct current stimulation for depression:3-Week,randomised,sham-controlled trial[J].The British Journal of Psychiatry,2012,200(1):52-59.
  • 2Bikson M,Rahman A,Datta A.Computational models of transcranial direct current stimulation[J].Clinical EEG and Neuroscience,2012,43(3):1761-1783.
  • 3Brunoni A R,Nitsche M A,Bolognini N,et al.Clinical research with transcranial direct current stimulation(tDCS):Challenges and future directions[J].Brain Stimulation,2012,5(3):175-195.
  • 4Datta A,Dmochowski J P,Guleyupoglu B,et al.Cranial electrotherapy stimulation and transcranial pulsed current stimulation:A computer based high-resolution modeling study[J].Neuroimage,2013,65:280-287.
  • 5Peterchev A V,Wagner T A,Miranda P C,et al.Fundamentals of transcranial electric and magnetic stimulation dose:Definition,selection,and reporting practices[J].Brain Stimulation,2012,5(4):435-453.
  • 6Faria P,Hallett M,Miranda P C.A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS[J].Journal of Neural Engineering,2011,8(6),066017.
  • 7Nitsche M A,Doemkes S,Karakoese T,et al.Shaping the effects of transcranial direct current stimulation of the human motor cortex[J].Journal of Neurophysiology,2007,97(4):3109-3117.
  • 8Carbunaru R,Durand D M.Toroidal coil models for transcutaneous magnetic simulation of nerves[J].IEEE Transactions on Biomedical Engineering,2001,48(4):434-441.
  • 9Brunoni A R,Ferrucci R,Fregni F,et al.Transcranial direct current stimulation for the treatment of major depressive disorder:A summary of preclinical,clinical and translational findings[J].Progress in Neuro-Psychopharmacology and Biological Psychiatry,2012,39(1):9-16.
  • 10Bai S,Dokos S,Ho K-A,et al.A computational modelling study of transcranial direct current stimulation montages used in depression[J].NeuroImage,2014,87(2):332-344.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部