期刊文献+

具有1-维导代数的6-维3-李代数的结构(英文) 被引量:3

Structures of six-Dim 3-Lie algebras with one-Dim derived algebras
下载PDF
导出
摘要 3-李代数与数学及数学物理的很多领域有着密切的关系。研究6-维3-李代数的结构,对特征零域上导代数维数为1的6-维3-李代数L,研究L的内导子代数adL的结构及导子代数DerL的结构,给出每个内导子及导子的具体表达形式。讨论导代数维数为1的6-维3-李代数L的度量结构,证明特征零域上导代数维数为1的6-维3-李代数L不存在度量函数。 3 -Lie algebras have close relationships with the fields of mathematics and mathematical physics. Structures of six - dimensional 3 - Lie algebras are considered. For the six-dimensional 3 - Lie algebras L with dimL1 = 1 over a field of characteristic zero, the inner derivation algebras adL and deriva- tion algebras DerL are studied, and every derivation and inner derivation are provided concretely. The metric structures of the six-dimensional 3 - Lie algebras L with dimL1 = 1 are discussed, and it is proved that there does not exist metric structure on L.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第4期421-424,共4页 Journal of Natural Science of Heilongjiang University
基金 The Natural Science Foundation of Hebei Province(A2010000194) Foundation of Graduate Education Reform of Hebei University(YJ11-25,YJ11-07)
关键词 3-李代数 内导子 导子 度量 3 - Lie algebra inner derivation derivation metric
  • 相关文献

参考文献4

二级参考文献33

  • 1V. T. Filippov. n-Lie algebras[J]. Sib Mat Zh, 1985, 26(6): 126-140.
  • 2Sh. M. Kasymov. On a theory Of n-Lie algebras[J]. Algebra i Logika, 1987, 26(3): 277-297.
  • 3Bai R and Song G The classification of six-dimensional 4-Lie algebras[J]. J. Phys. A: Math. Theor. 2009, 42(3): 35207.
  • 4FILIPPOV T. n-Lie algebras[J]. Sib Mat Zh, 1985, 26(6) : 126 -140.
  • 5KASYMOV M. On a theory of n-Lie algebras[J]. Algebras I Logika, 1987, 26(3) : 277 -297.
  • 6NAMBU Y. Generalized hamiltonian dynamics[J]. Phys Rev D, 1973(7) 2405 -2412.
  • 7TAKHTAJAN I,. On foundation of the generalized nambu mechanics[ J]. Comm Math Phys, 1994, 160 : 295 - 315.
  • 8BAGGER J, LAMBERT N. Gauge symmetry and supersymmetry of multiple M2-branes[ J]. Phys Rev D, 2008, 7: 65.
  • 9BAGGER J, LAMBERT N. Modeling multiple M2-branes[ J]. Phys Rev D, 2007, 75: 045020.
  • 10BAI R, MENG D. The strong semisimple n-Lie algebra[ J]. Comm Atg,2003, 31 (11 ) : 5331 -5341.

共引文献5

同被引文献16

  • 1FILIPPOV V T N. n-Lie algebras [ J]. Siberian Mathematical Journal, 1985, 26 (6) : 879 -891.
  • 2NAMBU Y. Generalized Hamihonian dynamics [ J ]. Physical Review D, 1973, 7 (8) : 2405 - 2412.
  • 3TAKHTAJAN L. On foundation of the generalized N ambu mechanics[ J ]. Communications in Mathematical Physics, 1994, 160 (2) : 295 -315.
  • 4BAGGER J, LAMBERT N. Gauge symmetry and supersymmetry of multiple M2-branes[J]. Physical Review D, 2008, 77(6) : 065008.
  • 5BAI R P, BAI C M, WANG J X. Realizations of 3-Lie algebras[J]. Journal of Mathematical Physics, 2010, 51(6) : 063505.
  • 6BAI R, WU Y. Constructions of 3-Lie algebras[ J]. Linear and Muhilinear Algebra, 2014, DOI: 10. 1080/03081087. 2014. 986121.
  • 7FILIPPOV V T N. n-Lie algebras[ J]. Siberian Mathematical Journal, 1985, 26(6) : 879 -891.
  • 8MARMO G, VILASI G, VINOGRADOV A M. The local structure of n-Poisson and n-Jacobi manifolds[J]. Journal of Geometry and Physics, 1998 25(1) : 141 -182.
  • 9NAMBU Y. Generalized Hamiltonian dynamics [ J ]. Physical Review D, 1973, 7 (8) : 2405 -2412.
  • 10TAKHTAJAN L. On foundation of the generalized Nambu mechanics [ J ]. Communications in Mathematical Physics, 1994, 160 (2) : 295 -315.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部