期刊文献+

小波Galerkin方法在Sturm-Liouville边值问题紧积分算子中的应用

Wavelet Galerkin algorithm and its application in compact integral operator with symmetrical kernel caused by the Sturm-Liouville boundary value problem
下载PDF
导出
摘要 考虑一类由Sturm-Liouville边值问题引出的核对称紧积分算子。给出该类边值问题解的紧积分算子表达形式,构造小波Galerkin方法求解该类积分算子的特征值问题,利用周期构造法构造平方可积空间中的紧支集小波基,讨论特征值在该算法下的收敛性。通过实例验证了小波Galerkin方法在Sturm-Liouville边值问题紧积分算子中应用的可行性。 Consider a compact integral operator with symmetrical kernel caused by the Sturm-Liouville boundary value problem, and give the compact integral operator expression about the solutions of the boundary value problem. The wavelet Galerkin method for solving the eigenvalue problem of this compact integral operator is developed, throughing the cycle constuction method to construct the compact support wavelet on the square integrable space, and discuss the convergence of the eigenvalue given by the method, finally by two examples to verify the feasibility of the wavelet Galerkin method applied in compact integral operator caused by the Sturm-Liouville boundary value problem.
机构地区 燕山大学理学院
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第4期425-430,共6页 Journal of Natural Science of Heilongjiang University
基金 秦皇岛市科技攻关计划资助项目(201001A035)
关键词 STURM-LIOUVILLE边值问题 紧积分算子 特征值 小波Galerkin方法 Sturm-Liouville boundary value problem compact integral operator eigenvalue problem wavelet Galerkin method
  • 相关文献

参考文献7

  • 1WALNUT D F. An introduction to wavelet analysis [ M]. Hong Kong: World Publishing Company, 2011.
  • 2BOYCE W E, DIPRIMA R C. Elementary differential equations and boundary value problems [ M ]. 9th ed. New Jersey: John Wiley & Sons, 2009.
  • 3叶春飞,朱剑.电磁问题数值求解中有限区间上平方可积函数空间小波基的构造[J].电波科学学报,1999,14(1):47-52. 被引量:1
  • 4陈剑,曾泰山.光滑核紧积分算子特征值的多尺度Galerkin快速算法[J].中山大学学报(自然科学版),2011,50(3):27-30. 被引量:1
  • 5CHEN M, CHEN Z, CHEN G. Approximate solutions of operator equations [ M ]. New Jersey: World Scientific Publishing Co, 1997.
  • 6DAUBECHIES I. Ten lectures on wavelets [ M ]. Philadelphia: Society for Industrial and Applied Mathematics, 1992.
  • 7BEYLKIN G, COIFMAN R, ROKHLIN V. Fast wavelet transforms and numerical algorithms I [ J ]. Communications on Pure and Applied Mathe- matics, 1991, 44(2): 141-183.

二级参考文献11

  • 1CHEN M, CHEN Z, CHEN G. Approximate solutions of operator equations [ M ]. World Scientific Publishing Co, 1997.
  • 2BABUSK I, OSBORN J. Eigenvalue problems, handbook of numercial analysis [ M ]. II. Vol. llFinite Element Methods(PartI), North-Holand, 1991.
  • 3SLOAN I H. Iterated Galerkin method for eigenvalue problem [J]. SIAM J Numer Anal, 1976, 13:753 - 760.
  • 4KULKARNI R P. A new superconvergent collocation method for eigenvalue problem [ J ]. Comp Math, 2006, 75 : 847 - 857.
  • 5CHEN Z, GNANESHWAR N, XU Y, et al. A fast collo- cation method for eigen-problems of weakly singular inte- gral operators [J]. J Sci Comput, 2009,41 : 256 -272.
  • 6GNANESHWAR N. A degenerate kernel method for eigenvalue problems of compact integral operator [ J ]. Adv Comput Math, 2007, 27 : 339 - 354.
  • 7KULKARNI R P. Use of extrapolation for improving the order of convergence of eigenelement approximations [ J ]. IMA J Numer Anal, 1997,17:271 -284.
  • 8CHEN Z, LONG G, GNANESHWAR N. Richardson ex- trapolation of iterated discrete projection methods for eigenvalue approximation [ J]. J Comp App Math, 2009, 223:48 -61.
  • 9CHEN Z, MICCHELLI C A, XU Y. The Petrov-Galerkin methods for second kind integral equations II: muhiwave- lets scheme [J]. Adv Comput Math, 1997, 7 : 199 - 233.
  • 10HUANG M. A construction of multiscale bases for Petrov-Galerkin methods for integral equations [ J]. Adv Comput Math, 2006, 25:7 - 22.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部