期刊文献+

动力系统方法重构CT图像(英文)

Dynamical system methods for image reconstruction in computed tomography
下载PDF
导出
摘要 基于全变分正则化构造了重构CT图像的动力系统方法。相比于传统的迭代反演方法,在对算子施加较弱的假设条件下,证明解的存在性,并用Lyapunov稳定性理论证明方法是稳定的。通过具体的数值模拟,分别重构了全角、半角的Shepp-Logan和人体腹部CT图像,并将所提方法与基于水平集的重构方法做了比较。 Based on total variational regularization, the dynamical system methods for the image reconstruction in computed tomography is proposed. Compared with classical iterative methods, the exist- ence of the solution and the stability of dynamical systems are proven by using Lyapunov stability theorem under weaker restrictions on the operator. In numerical experiment, the Shepp-Logan phantom and CT image of abdomen with full angle and limited angle are reconstructed, respectively. Moreover, the reconstruction based on dynamical system methods and based on level set are compared. This kind of problem is widely applied in the field of medicine.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第4期435-444,共10页 Journal of Natural Science of Heilongjiang University
基金 Supported by the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2011010) the Inter-Government S&T Cooperation Project between China and Romania(40-20) China Postdoctoral Science Foundation Funded Project(20100471043) the Postdoctoral Science Foundation of Heilongjiang Province
关键词 图像重构 全变分 动力系统正则化 LYAPUNOV稳定性理论 image reconstruction total variational dynamical systems regularization Lyapunov stability theory
  • 相关文献

参考文献33

  • 1ENGL H W, HANKE M, NEUBAUER A. Regularization of inverse problems[ M ]. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1996.
  • 2NATTERER F. The mathematics of computerized tomography[ M ]. Philadelphia: Society for Industrial and Applied Mathematics, 1986.
  • 3PACK J D, NOO F, CLACKDOYLE R. Cone-beam reconstruction using the backprojection of locally filtered prnjections[ J]. IEEE Transactions on Medical Imaging, 2005, 24( 1 ): 70-85.
  • 4SUNNEG,-RDH J, DANIELSSON P E. Regularized iterative weighted filtered backprojection for helical cone-beam CT[ J]. Medical physics, 2008, 35(9) : 4173 -4185.
  • 5GUAN Huai-qun, GORDON R. Computed lomography using algebraic reconstruction techniques (ARTs) with different projection access schemes: a cmnparison study under praclical situations[ J]. Physics in Medicine and Biology, 1996, 41 (9) :1727 - 1743.
  • 6XU Xiao-liang, LIOW J S, STROTHER S C. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography[ J ]. Medical Physics, 1993, 20(6) : 1675 - 1684.
  • 7MUELLER K, YAGEL R. Rapid 3-D cone-beam reconstruction with the simuhaneous algebraic reconstruction technique (SART) using 2-D te-- ture mapping hardware[ J ]. IEEE Transactiuns on Medical hnaging, 2000, 19 (12) : 1227 - 1237.
  • 8SONG Jia-yu, LIU Qing H, JOHNSON G A, et al. Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT [J]. Medical Physics, 2007, 34:4476-4483.
  • 9RENKER M, RAMACHANDRA A, SCHOEPF U J, et al. lterative image reconstruction techniques: applications for cardiac CT[ J ]. Journal of Cardiovascular Computed Tomography, 2011, 5 (4) : 225 - 230.
  • 10HAN B K, GRANT K L R, GARBERICH R, et al. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets[ J ]. Journal of Cardiovascular Computed Tomography, 2012, 6 ( 3 ) : 200 - 204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部