期刊文献+

基于多人工智能方法的交易策略研究 被引量:2

Research on trading strategies based multi-artificial intellegence
下载PDF
导出
摘要 利用RAVI等5种趋向技术指标将股票价格时间序列映射到高维特征空间,建构了支持向量机分类器,在不同趋势中选择相适应的不同的交易策略。为获得风险与收益的帕累托最优解,运用NSGA-Ⅱ算法对MA策略和KD策略进行了参数优化。经过测试,所建立的交易策略在上证指数2000至2009年中取得明显的收益,远远高于简单持有策略。 The time series of stock price are reflected into high dimensional character space, using RAVI and four other technical indicators of tendency,SVM classifier is constructed to assort trends. Furthermore, trade decisions can be chosen responding to different kinds of trends respectively. In order to obtain the Pareto optimal solution be- tween risk and earnings, NSGA - Ⅱ is utilized to optimize parameters of both the MA and the KD strategy. 2000 2009 SSE composite index data is used in empirical study, and the profit gained from the trading strategy constructed above is much higher than the counterpart which owns a simple buy and hold investment scenario.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第4期549-552,共4页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(71173060) 国家自然科学基金重点资助项目(71031003)
关键词 支持向量机 NSGA—Ⅱ 交易策略 support vector machine NSGA-II trading strategies
  • 相关文献

参考文献12

  • 1李莎,李红刚.股票市场中技术分析有效性的实证研究[J].北京师范大学学报(自然科学版),2009,45(2):212-214. 被引量:13
  • 2魏玉根.技术交易系统与我国股市有效性的实证分析[J].经济科学,2000(2):56-63. 被引量:21
  • 3张维,赵帅特,熊熊,张永杰.计算实验金融、技术规则与时间序列收益可预测性[J].管理科学,2008,21(3):74-84. 被引量:13
  • 4ESFAHANIPOUR A, MOUSAVI S. A genetic programming model to generate risk-adjusted technical trading rules in stock markets[J]. Expert Systems with Applications, 2011, 38 (7) : 8438 - 8445.
  • 5CREAMER G, FREUND Y. Automated trading with boosting and expert weighting[J]. Quantitative Finance, 2010, 10(4) : 401 -420.
  • 6NEFTCI S N. Naive trading rules in financial markets and wiener-kolmogorov prediction theory: a study of "technical analysis" [ J]. Journal of Business, 1991 : 549 -571.
  • 7PRUITT S W, WHITE R E. The CRISMA trading system : who says technical analysis can' t beat the market? [ J ]. The Journal of Portfolio Man- agement, 1988, 14(3) : 55 -58.
  • 8FERNANDEZ - RODRIGUEZ F, GONZALEZ - MARTEL C, SOSVILLA - RIVERO S. Optimization of technical rules by genetic algorithms : evi- dence from the Madrid stock market[ J]. Applied Financial Economics, 2005, 15 (11 ) : 775 -775.
  • 9DOURRA H, SIY P. Investment using technical analysis and fuzzy logic[ J]. Fuzzy Sets and Systems, 2002, 127 (2) : 221 -240.
  • 10KWON Y K, MOON B R. A hybrid neurogenetic approach for stock forecasting[ J]. IEEE Transactions on Neural Networks, 2007, 18 (3) : 851 - 864.

二级参考文献43

共引文献41

同被引文献13

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部