期刊文献+

正则化路径上三步式SVM贝叶斯组合 被引量:1

Three-Step Bayesian Combination of SVM on Regularization Path
下载PDF
导出
摘要 模型组合旨在整合并利用假设空间中多个模型提高学习系统的稳定性和泛化性.针对支持向量机(support vector machine,SVM)模型组合多采用基于样本采样方法构造候选模型集的现状,研究基于正则化路径的SVM模型组合.首先证明SVM模型组合Lh-风险一致性,给出SVM模型组合基于样本的合理性解释.然后提出正则化路径上的三步式SVM贝叶斯组合方法.利用SVM正则化路径分段线性性质构建初始模型集,并应用平均广义近似交叉验证(generalized approximate cross-validation,GACV)模型集修剪策略获得候选模型集.测试或预测阶段,应用最小近邻法确定输入敏感的最终组合模型集,并实现贝叶斯组合预测.与基于样本采样方法不同,三步式SVM贝叶斯组合方法基于正则化路径在整个样本集上构造模型集,训练过程易于实现,计算效率较高.模型集修剪策略可减小模型集规模,提高计算效率和预测性能.实验结果验证了正则化路径上三步式SVM模型组合的有效性. Model combination integrates and leverages multiple models in the hypothesis space to improve the reliability and generalization performance of learning systems. In this paper, a novel three-step method for model combination of support vector machines (SVM) based on regularization path is proposed. The Lh-risk consistency for model combination of SVM is defined and proved, which gives the mathematical foundation of the proposed method. Traditionally, model set for model combination of SVM is constructed by data sampling methods. In our method, the model set is constructed with SVM regularization path, which is trained by using the same original training set. First, the initial model set is obtained according to the piecewise linearity of SVM regularization path. Then, the average of GACV is applied to exclude models with poor performance and prune the initial model set. The pruning policy improves not only the computational efficiency of model combination but the generalization performance. In the testing or predicting phase, the input-sensitive combination model set is determined with the minimal neighborhood method, and Bayesian combination is performed. Compared with traditional model combination methods of SVM, the proposed method need not to tune the regularization parameters for each individual SVM model, thus the training procedure can be simplified considerably. Experimental results demonstrate the effectiveness and efficiency of the three-step Bayesian combination of SVM on regularization path.
作者 王梅 廖士中
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1855-1864,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61170019) 天津市自然科学基金项目(11JCYBJC00700)
关键词 模型组合 正则化路径 支持向量机 一致性 贝叶斯组合 model combination regularization path support vector machines (SVM) consistency Bayesian combination decomposition
  • 相关文献

参考文献22

  • 1Burges CJ. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2): 121-167.
  • 2Anthony M, Holden S B. Cross-validation for binary classification by real-valued functions: Theoretical analysis[CJ //Proc of the llth Annual Conf on Computational Learning Theory. Berlin: Springer, 1998: 218-229.
  • 3Chapelle 0, Vapnik V. Model selection for support vector machines[GJ //Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999: 230-236.
  • 4Vapnik V, Chapelle O. Bounds on error expectation for support vector machines[J]. Neural Computation, 2000, 12 (9): 2013-2036.
  • 5Gold C, Sollich P. Model selection for support vector machine classification[J]. Neurocornputing , 2003, 55 (1): 221-249.
  • 6Keerthi S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE Trans on Neural Networks, 2002, 13(5): 1225-1229.
  • 7刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 8丁立中,廖士中.基于正则化路径的支持向量机近似模型选择[J].计算机研究与发展,2012,49(6):1248-1255. 被引量:10
  • 9Breiman L. Bagging predictors[J]. Machine Learning, 1996,24(2): 123-140.
  • 10Valentini G, Muselli M, Ruffino F. Bagged ensembles of support vector machines for gene expression data analysis[CJ //Proc of the IntJoint Conf on Neural Networks. Los Alamitos, CA: IEEE Computer Society, 2003: 1844-1849.

二级参考文献55

  • 1V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2V. Cherkassky, F. Mulier. Learning from Data: Concept,Theory and Method. NY: John Viley & Sons, 1997.
  • 3O. Chapelle, V. M. Vapnik. Model selection for support vector machines. In: Proc. the 12th Conf. Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
  • 4O. Chapelle, V. N. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1): 131~159.
  • 5N. Cristianini, J. Shawe-Taylor, J. Kandola, et al. On kernel target alignment. In: Proc. Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002. 367~373.
  • 6K. Tsuda, G. Ratsch, S. Mika, et al. Learning to predict the leave-one-out error of kernel based classifiers. In: Proc. 2001Int'l Conf. Artificial Neural Networks-ICANN 2001. Berlin:Springer-Verlag, 2001.
  • 7Vapnik V. The Nature of Statistical Learning Theory [M]. Berlin: Springer, 2000.
  • 8Guyon I, Saffari A, Dror G. Model selection: Beyond the Bayesian/frequent divide[J]. Journal of Machine Learning Research, 2010, 11: 61-87.
  • 9Duan K, Keerthi S, Poo A. Evaluation of simple performance measures for tuning SVM hyperparameters [J]. Neurocomputing, 2003, 51: 41-59.
  • 10Huang C, Wang C. A GA-hased feature selection and parameters optimization for support vector machines [J]. Expert Systems with Applications, 2006, 31(2):231-240.

共引文献60

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部