期刊文献+

智能世界的建模与诊断 被引量:3

Modeling and Diagnosis of the Intelligent World
下载PDF
导出
摘要 统一的抽象建模框架以及形式化表示可以帮助实现自动推理.随着物联网技术的发展,物理世界中嵌入了各种智能对象,改变了物理世界的部分特征,增加了建模和推理的复杂性.根据物联网带来的智能世界的特征,在知识重构与抽象模型(KRA模型)的统一建模框架基础上,提出了可区分的知识重构与抽象模型(dKRA模型).该模型通过3个相互关联的子模型及其之间的关系来表示智能世界,并给出相关定义和定理说明在所提出的模型框架内,可以将基于模型的诊断过程限制在一个(或多个)子模型中.研究内容侧重于系统设计阶段的模型验证,分别从理论和实验角度分析了基于智能世界dKRA模型的诊断过程时间效率的提高(与基于智能世界KRA模型的诊断过程相比). Unified abstraction modeling framework and the formal representation help to realize automated reasoning. With the rapid development of the Internet of Things (loT), various smart or intelligent ob}ects are embedded in the physical world which partly changes the characters of the composed entities. Our familiar world is accordingly changing into an intelligent world which greatly increases the modeling and reasoning complexity. In this paper, based on the unified knowledge reformulation and abstraction (KRA) model framework presented by Saitta and Zucker, we propose a distinguishable knowledge reformulation and abstraction (dKRA) model according to the characters of the intelligent world. Different from the KRA model which represents the intelligent world in a unified way, the proposed dKRA model can be formalized through three interrelated sub-models and their relationships. We give some definitions and theorems based on the correlative concepts of model- based diagnosis to show that the diagnosis process can be limited in one (or more than one) of the sub- models. By focusing on the model verification during the phase of system designing, the presented diagnosis algorithm running on the dKRA model of an intelligent world is analyzed from both theoretical and experimental perspectives to show the improvement on the diagnosis process running directly on the KRA model of the same intelligent world.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1954-1962,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61272208 61133011 60973089 61003101 61170092) 吉林省科技发展计划基金项目(20100173) 吉林省教育厅"十二五"科学技术研究基金项目(2011467 2012190 2011463) 符号计算与知识工程教育部重点实验室开放项目(93K172012K09) 国家留学基金项目(201208220141)
关键词 可区分的KRA模型 基于模型的诊断 智能世界 抽象 自动推理 distinguishable knowledge re{ormuiation and abstraction model model-based diagnosis intelligent world abstraction automated reasoning
  • 相关文献

参考文献15

  • 1Soldano H. A modal view on abstract learning and reasoning. L.1. P. N. UMR-CNRS 7030[R]. Paris: University Paris-Nord, 2010.
  • 2Subramanian D. A theory ofJustified reformulations[0]. St andford , Computer Science Department, Stanford University. 1988.
  • 3Bredeche N, Shi Z. ZuckerJ D. Perceptual learning and abstraction in machine earning: an application to autonomous robotics[J]. IEEE Trans on Systems. Man. and Cybernetics. Part C: Applications and Reviews, 2006. 36 (2): 172-181.
  • 4Chittaro L, Ranon R. Hierarchical model-based diagnosis based on structural abstraction[J]. Artificial Intelligence. 2004. 155(1/2): 147-182.
  • 5Saitta L, Torasso P. Torta G. Formalizing the abstraction process in model based diagnosis[GJ //LNCS 4612: Proc of the 7th Int Conf on Abstraction, Reformulation. and Approximation. Berlin: Springer, 2007: 314-328.
  • 6Hendriks T. The impact of independent model formation on model-based service interoperability[CJ //Proc of the 7th WSEAS Int Conf on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED'08). Stevens Point. WI: WSEAS. 2008: 434-441.
  • 7The Hammersmith Group. The Internet of things: Networked objects and smart devices[R]. New York: The Hammersmith Group. 2010.
  • 8ElsonJ, Estrin D. Sensor networks: A bridge to the physical world[M]. Wireless Sensor Networks. 2004: 3-20.
  • 9Joseph A D. Ubiquitous System Software[J]. IEEE Pervasive Computing. 2004, 3(3): 57-59.
  • 10Boone G. Reality Mining: Browsing Reality with Sensor Networks COL]. Sensors Magazine Online. 2004[2010-09- 30]. http://sensorsmag. com/articles/0904/14/main. shtml.

共引文献2

同被引文献34

  • 1季晓慧,张健.约束问题求解[J].自动化学报,2007,33(2):125-131. 被引量:13
  • 2Reiter. A theory of diagnosis from first principles[ J]. Artificial Intelligence, 1987,32 ( 1 ) :57-96.
  • 3Luca Chittaro Hierarchical model-based diagnosis based on structural abstraction[J].Artificial Intelligence, 2004,155 ( 2 ) : 147 -182.
  • 4Baroni P. Diagnosis of large active systems [J]. Artificial Intelli- gence, 1999,110( 1 ) : 135-183.
  • 5Luca Console, Claudia Picardi ,Marina Ribaudo. Process algebras for systems diagnosis [ J ]. Artificial Intelligence,2002,142 ( 1 ) : 19-51.
  • 6Zhang Xue-nong. Formal analysis of diagnostic notions [ C ]. In: Proceedings of International Conference on Machine Learning and Cybernetics, Xian, China ,2012 : 1303-1307.
  • 7Yannick Pencole. A formal framework for the decentralised diagnosis of large scale discrete event systems and its application to telecommunication networks [J]. Artificial Intelligenoe ,2005,164:121 - 170.
  • 8Luigi Portinale, Diego Magro, Pietro Torasso. Multi-modal diagnosis combining case-based and model-based reasoning:a formal and ex- perimental analysis [ J]. Artificial Intelligence,2004,158 : 109-153.
  • 9OUYANG Dan-tong, Gen Xue-na, Gou Jin-song, et al. Heuristic al- gorithm of computering minimal hitting sets matrix[J]. Journal of Jilin University ( Engineering and Technology Edition ), 2013,43 (1) :106-110.
  • 10Wang Xiao-yu, OUYANG Dan-tong,Zhao Jian,et al. Conflict-based diagnosis of discrete event system[ J ]. Journal of Jilin University(En- gineering and Technology Edition) ,2013,43(2) :380-385.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部