期刊文献+

基于复数法的几何定理可读机器证明

Machine Proofs in Geometry Based on Complex Number Method
下载PDF
导出
摘要 已有的机器证明方法在处理一些涉及大规模符号运算的几何问题时,常因算法复杂度过高或机器能力的限制,有时并不能在合理时间内实现可读机器证明.故提出了复数法这一新的几何定理机器证明算法,并选用符号计算功能较为强大的软件Mathematica创建了新证明器CNMP(complex number method prover).新提出的复数法能有效地解决构造型几何命题,对用于测试与评价几何定理证明器性能的综合性平台TGTP(thousands of geometric problems for geometric theorem provers)上的180个几何问题的实验结果表明,CNMP的解题能力与运行效率均令人满意.尤其是对于一些具有相当难度的几何定理,如五圆定理、Morley定理、Lemoine圆定理、Thebault定理、Brocard圆定理等,CNMP均能在短时间内给出可读机器证明. With the rapid development of machine proofs in geometry, more and more geometric automated machine proving methods were proposed. But when dealing with some difficult geometric problems which involve a great number of symbolic computation, the existing machine proving programs failed because of the information explosion or the complexity of the algorithm. Thus a new machine proving method, the complex number method, is proposed. By choosing the software Mathematica which has powerful capability of symbolic computation, a new prover CNMP(complex number method prover) is created. The CNMP can easily solve all the 180 geometric problems on TGTP, which is a Web-based library of problems in geometry. It aims to become a comprehensive common library of problems with a significant size and unambiguous reference mechanism, easily accessible to all researchers in the automated reasoning in geometry community. The laboratory report shows that the CNMP is very effective and the readability is also satisfying. In particular, the CNMP can prove some very difficult geometric theorems, such as five circles theorem, Morley theorem, Lemoine circle theorem, Thebault theorem, Brocard circle theorem and so on.
作者 李涛 张景中
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1963-1969,共7页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2011CB302412) 国家自然科学基金项目(11001228)
关键词 复数法 CNMP 可读机器证明 TGTP 五圆定理 complex number method CNMP (complex number method prover) readable machineproof TGTP five circles theorem
  • 相关文献

参考文献11

  • 1常庚哲,伍润生.复数与几何[M].北京:人民教育出版社.1964(09).第20-22页
  • 2Deaux R. Introduction to the geometry of complex numbers[M]. New York, Dover Publications. Inc, 2008.
  • 3Buchberger B. An algorithm criterion for the solvability of a system of algebraic equations[l]. Aequationes Math, 1970, (4), 374383.
  • 4洪加威.能用例证法证明几何定理吗?[J].中国科学,1986,16:225-233.
  • 5Yang L, ZhangJ Z. Li C Z. A prover for parallel numerical verification of a class of constructive geometry theorems[CJ IIProc of Int Workshop on Mathematics Mechanization. Shanghai, Academic Publishers. 1992, 244255.
  • 6ZhangJ Z. Chou S C, Gao X S. Automated production of traditional proofs for theorems in Euclidean geometry-I, The Hilbert intersection point theorems[RJ. Washington, Washington State University, 1992.
  • 7Chou S C. Gao X S. ZhangJ Z. Automated production of traditional proofs for constructive geometry theorems[CJ IIProc of the 8th Annual IEEE Symp on Logic in Computer Science. Los Alamitos. CA: IEEE Computer Society. 1993: 48-56.
  • 8张景中,高小山,周咸青.基于前推法的几何信息搜索系统[J].计算机学报,1996,19(10):721-727. 被引量:34
  • 9Chou S C. Gao X S. ZhangJ Z. A deductive database approach to automated geometry theorem proving and discovering[J].Journal Automated Reasoning. 2000. 25 (3): 219-246.
  • 10Zou Y. ZhangJ Z. Automated generation of readable proofs for constructive geometry statements with the mass point method[CJ IILNAI 6877: Proc of the 8th Int Workshop on Automated Deduction in Geometry (ADG 2010). Berlin: Springer. 2011: 221-258.

二级参考文献10

  • 1Chou S C,Machine Proofs in Geometry,1994年
  • 2Chou S C,Proc of Eighth IEEE Symposium on Logic in Computer Sci,1993年
  • 3Chou S C,Proc of ISSAC.93,1993年
  • 4Yang L,Proc of 1992 Intenational Workshop on mathematics Mechanization,1992年
  • 5Zhang J Z,Theoretical Computer Sci,1990年,74卷,253页
  • 6Chiu S C,Mechanical Geometry Theorem Proving,1988年
  • 7Chou S C,J Automated Reasoning,1986年,4卷,253页
  • 8Chou S C,Contemporary Mathematics,1984年,29卷,243页
  • 9吴文俊,几何定理机器证明的基本原理,1984年
  • 10Wu Wentsun,Sci Chin,1978年,21卷,159页

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部