期刊文献+

基于引导素更新和扩散机制的人工蜂群算法 被引量:6

Artificial Bee Colony Algorithm Based on Inductive Pheromone Updating and Diffusion
下载PDF
导出
摘要 人工蜂群算法是一种新型的搜索算法,其机理是通过模拟蜂群采蜜过程中体现出的智能行为来实现对问题的求解.在现有的蜂群算法中,蜂群间的信息交流仅使用单一的行为通信(跳舞),蜂群间的协作存在明显不足,影响了蜂群算法的求解性能.根据真实蜜蜂多模式传递信息的客观事实,通过引入基于引导素的化学通信方式,提出一种新的更忠实反映蜂群信息传递的蜂群算法,并应用于多维背包问题(MKP)的求解.新算法将行为通信和化学通信相融合,利用引导素的更新和扩散机制使蜂群能够更好地进行协作.MKP的仿真实验结果表明新算法优于传统的ABC算法.与其他一些元启发式搜索算法的比较同样显示了新算法的有效性. Artificial bee colony (ABC) algorithm is a novel search algorithm which simulates the intelligent foraging behavior of honeybee swarm to solve the practical problems. However, there is only a behavior communication way (dancing) in the current ABC algorithm, which results in the lack and lag of collaboration among bees and influences the solving performance of ABC algorithm. Inspired by the objective fact of transinformation among real bees, a new ABC algorithm is proposed by introducing a chemical communication way based on inductive pheromone and applied to solve multidimensional knapsack problems (MKP), which is more faithful to the transmission information of real bee colony system. With the combination of the behavior communication way and the chemical communication way, the new algorithm makes the honeybees cooperate with each other better by the scheme of inductive pheromone updating and diffusion. A number of simulation experiments and comparisons on benchmark datasets of MKP demonstrate that the performance of the new algorithm is superior over the original ABC algorithm. The performances of the new algorithm have also been compared with some typical meta-heuristic search algorithms, and the computational results show that the new ABC algorithm obtains better quality solutions than all the other approaches.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期2005-2014,共10页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2014CB744601 2011CB302703) 国家自然科学基金项目(61375059) 北京市自然科学基金项目(4102010)
关键词 蜂群算法 化学通信 引导信息素 扩散机制 多维背包问题 artificial bee colony algorithm~ chemical communication~ inductive pheromone~ diffusionscheme~ multidimensional knapsack problem
  • 相关文献

参考文献19

  • 1Karaboga D. An idea based on honey bee swarm for numerical optimization. TR06[R]. KaySeri. Turkey: Erciyes University. Engineering Faculty. Computer Engineering Department. 2005.
  • 2Karaboga D. Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation. 2009. 214(1): 108-132.
  • 3Singh A. An artificial bee colony (ABC) algorithm for the leaf-constrained rmrumum spanning tree problem[J]. Applied Soft Computing. 2009. 9 (2): 625-631.
  • 4Tasgetiren M F. Pan Quanke , Suganthan P N. et al. A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem[J]' Information Sciences. 2011.181(12): 2455-2468.
  • 5Sundar S. Singh A. Rossi A. An artificial bee colony algorithm for the 0-1 multidimensional knapsack problem[CJ IIProc of the 3rd Int Conf on Contemporary Computing (lC3 2010). Berlin: Springer. 2010: 141-151.
  • 6Omkar S N. Senthilnath 1. Khandelwal R. et al. Artificial bee colony for multi-objective design optimization of composite structures[J]. Applied Soft Computing. 2011. 11 (1): 489-499.
  • 7Karaboga D. Ozturk C. A novel clustering approach: artificial bee colony algorithm[J]. Applied Soft Computing. 2011.11(1): 652-657.
  • 8Karaboga D. Ozturk C. Neural networks training by artificial bee colony algorithm on pattern Classification[J]. Neural Network World. 2009. 19(3): 279-292.
  • 9XU Chunfan , Duan Haibin. Artificial bee colony optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft[J]. Pattern Recognition Letters. 2010.31(3): 1759-1772.
  • 10Oliveira de I M S. Schirr;, R. Swarm intelligence of artificial bees applied to in-core fuel management optimization[J]. Annals of Nuclear Energy. 2011. 38(5): 1039-1045.

二级参考文献17

  • 1Freville A. The multidimensional 0-1 knapsack problem: An overview [J]. European Journal of Operational Research, 2004, 155(1): 1-21
  • 2Leguizamon G, Crespo M L, Kavka C, et al. The ant colony metaphor for multiple knapsack problem [C] //Proc of the 3rd Congreso Argentinoen Ciencias de la Computacion. Piscataway: IEEE, 1997:1080-1090
  • 3Leguizamon G, Michalewicz Z. A new version of ant system for subset problems [C] //Proc of the 1999 Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1459- 1464
  • 4Rafael P H, Nikitas D. On the performance of the ant colony system for solving the multidimensional knapsack problem [C] //Proc of the 2003 IEEE Pacific Rim Conf on Communications, Computers and Signal Processing, Vol 1. Piscataway: IEEE, 2003: 338-341
  • 5Alaya I, Solnon C, Ghedira K. Ant algorithm for the multidimensional knapsack problem [C]//Proc of Int Conf on Bioinspired Methods and Their Applications. Ljubljana, Slovenia: Jozef Stefan Institute, 2004:63-72
  • 6Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies [C] //Proc of Int Conf on Evolutionary Computation. Piscataway: IEEE, 1996: 622- 627
  • 7Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B, 1996, 26 (1) : 29-41
  • 8Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66
  • 9Dorigo M, Birattari M, Stutzle T. Ant colony optimization artificial ants as a computational intelligence technique [J] IEEE Computational Intelligence Magazine, 2006, (11) : 28-39
  • 10Stutzle T, Hoos H H. MAX-MIN ant system [J]. Future Generation Computer Systems, 2000, 16(8): 889-914

共引文献89

同被引文献58

  • 1魏英姿 ,赵明扬 .强化学习算法中启发式回报函数的设计及其收敛性分析[J].计算机科学,2005,32(3):190-193. 被引量:13
  • 2贺毅朝,王熙照,寇应展.一种具有混合编码的二进制差分演化算法[J].计算机研究与发展,2007,44(9):1476-1484. 被引量:50
  • 3胡珂.基于人工蜂群算法在无线传感网络覆盖优化策略中的应用研究[D].成都:电子科技大学,2012.
  • 4TAM N,LEE J, HU C, A Haar-wavelet-based l,ucy-Richardson al- gorithm for positron emission tomography image restoration[ J ]. Nu- clear Instruments and Methods in Physics Research A,2011 (124) : 122-127.
  • 5TEKALP A, SEZAN M. Identification of image and blur parameters for the restoratinn nf noncausal blurs[ J ]. IEEE Trans. Acoustics, Speech, Signal Processi ng, 2010,34 ( 4 ) : 963-972.
  • 6ZHOU X,ZHOU F, BAI X. A boundary condition based on decon- volution framework for image deblurring[ J ]. Journal of Computa- tion and Applied Mathematics,2014,26(1 ) :14-29.
  • 7Singh A. An artificial bee colony algorithm for the leaf-con- strained minimum spanning tree problem [J]. Applied Soft Computing, 2009, 9 (2): 625-631.
  • 8Alatas B. Chaotic bee colony algorithms for global numerical optimization [J]. Expert Systems with Applications, 2010, 37 (8): 5682-5687.
  • 9Kang F, Li J, Ma Z. Rosenbrock artificial bee colony algo- rithm for accurate global optimization of numerical functions [J]. Information Sciences, 2011, 181 (16): 3508-3531.
  • 10Ozturk C,Karaboga D,Gorkemli B.Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm[J].Sensors,2011,11(6):6056-6065.

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部