期刊文献+

圆柱坐标系扩散问题有限容积紧致格式研究 被引量:1

Compact Finite-Volume Scheme for Diffusion Problems in a Cylindrical Coordinate System
原文传递
导出
摘要 圆柱坐标系下扩散型方程由于扩散面积随半径的变化而不同,使得该坐标系下高阶紧致格式的推导十分复杂。本文通过坐标转化的思想,将圆柱坐标系下扩散型方程转化为类直角坐标的形式(Lnr型扩散型方程),并推导出Lnr型扩散型方程的四阶精度有限容积紧致格式。本文使用了显式、隐式两种方法求解方程,并与二阶精度有限容积法进行对比。计算结果表明本文所推导的紧致格式较二阶精度有限容积法在相同的网格机架点下可以得到较高的精度,同时也表明本文所提出的方程转化方法是有效可行的。 In cylindrical coordinate systems, it is not convenient to construct high-order compact schemes directly, because diffusion area varies along the radius. In this article, we propose a new governing equation (we call it Lnr-type equation) for the heat conduction problems in a cylindrical coordinate system, which shares the similar form with that in a Cartesian coordinate system. After- wards, the fourth-order compact schemes are constructed and formulated for the proposed equation by borrowing the constructing method in a Cartesian coordinate system. Subsequently, the results calculated by the proposed compact finite volume schemes are compared with those calculated by the second-order central difference (CD) schemes. The comparison shows that higher-order accuracy could be obtained by the proposed scheme on the same mesh. The study in this article confirmed that the Lnr-type governing equation is valid and feasible for constructing the high-order compact finite-volume schemes for the heat conduction problems in a cylindrical coordinate system.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第9期1735-1739,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51134006 No.51176204)
关键词 圆柱坐标系 扩散型方程 有限容积 紧致格式 cylindrical coordinate system diffusion equation finite-volume method (FVM) com- pact scheme
  • 相关文献

参考文献5

  • 1Lele S K.Compact Finite Difference Schemes With Spectral-Like Resolution [J].J Comput Phys,1992,103(1):16-42.
  • 2Kobayashi M H.On a Class of Pade Finite Volume Methods [J].J Comput Phys,1999,156(1):137-180.
  • 3Arpiruk H,Michael M.Compact Fourth-Order Finite Volume Method for Numerical Solutions of Navier-Stokes Equations on Staggered Grids [J].J Comput Phys,2010,229(20):7545-7570.
  • 4徐岚,许春晓,崔桂香,陈乃祥.四阶紧致格式有限体积法湍流大涡模拟[J].清华大学学报(自然科学版),2005,45(8):1122-1125. 被引量:4
  • 5徐岚,崔桂香,许春晓,张兆顺,陈乃祥.非均匀网格湍流大涡模拟高精度有限体积解法[J].空气动力学学报,2006,24(3):275-284. 被引量:5

二级参考文献13

  • 1Pereira J M C, Kobayashi M H, Pereira I C F. A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions [J]. Journal of Computation Physics, 2001, 167: 217-243.
  • 2Germano M, Piomelli U, Moin P. A dynamic subgrid scale eddy viscosity model [J]. Physics of Fluid A, 1991, 3(7): 1760-1765.
  • 3Kobayash M H. On a class of Pad'e finite volume methods [J]. Journal of Computational Physics, 1999, 156: 137-180.
  • 4Werner H, Wengle H. Large-eddy simulation of turbulent flow over and around a cube in a plate channel [A]. The Eighth International Symposium on Turbulent Shear Flows [C]. Berlin: Springer-Verlag, 1991. 1941-1946.
  • 5Moser R D, Kim J, Mansour N N. Direct numerical simulation of turbulent channel flow up to Reτ=590 [J]. Physics of Fluid, 1999, 11: 943-945.
  • 6KOBAYASH M H.On a class of Pad'e finite volume methods[J].Journal of Computational Physics,1999,156:137-180.
  • 7GERMANO M,PIOMELLI U,MOIN P.A dynamic subgrid scale eddy viscosity model[J].Physics of Fluid A,1991,3(7):1760-1765.
  • 8STONE H L.Iterative solution of implicit approximation of multidimensional partial differential equations[J].SIAM J.on Num.Analysis,1968,5:530-558.
  • 9WERNER H,WENGLE H.Large-eddy simulation of turbulent flow over and around a cube in a plate channel[A].The Eighth International Symposium on Turbulent Shear Flows[C].Berlin:Springer-Verlag,1991.1941-1946.
  • 10MOSER R D,KIM J,MANSOUR N N.Direct numerical simulation of turbulent channel flow up to Reτ = 590[J].Physics of Fluid,1999,11:943-945.

共引文献6

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部