期刊文献+

半监督增量式SVM在故障诊断中的应用研究 被引量:1

Application Research of Semi-supervised Incremental SVM on Fault Diagnosis
原文传递
导出
摘要 基于半监督学习能够有效降低人工标注成本,以及增量学习可以加快训练速度,避免数据量大时训练时间过长等特性,本文提出了一种半监督增量式SVM算法。在算法中,首先对已标记样本进行训练得到初始分类器,然后利用此分类器对新增样本进行标记,最后结合KKT条件选择合适的样本对分类器进行更新。每当有新样本加入便执行以上过程,以保证分类器得到及时更新。将该算法运用于6135D型柴油机的故障诊断中,并与传统SVM算法和增量式SVM算法进行了对比,证实了本文所提算法的可行性与有效性。 For that the employment of the semi-supervised learning based approach decreases the cost of manually-marking,and the employ- ment of the incremental learning method gain the learning speed ,which avoid the long-time learning when the number of the data is too large. a semi-supervised incremental learning SVM (Support Vector Machine) algorithm is proposed. In this algorithm, the initial classifier is ob- tained by training the pre-labeled samples. Then the new samples are labeled by this classifier. At last, KKT constraint is used for the selec- tion of the proper samples which are employed for the updating of classifier. The classifier is renewed by new samples in this process. In the last, this algorithm is applied into the fault diagnosis of the 6135D diesel engine. A performance comparison between the conventional SVM al- gorithm and semi-supervised incremental learning SVM algorithm are also made. The experiment results demonstrate the effectiveness of the algorithm.
出处 《世界科技研究与发展》 CSCD 2013年第4期459-461,共3页 World Sci-Tech R&D
基金 国家自然科学基金(60974090) 重庆市攻关项目(2010ac3055)资助
关键词 支持向量机(SVM) 半监督学习 增量学习 故障诊断 Support Vector Machine (SVM) semi-supervised learning incremental leaming fault diagnosis
  • 相关文献

参考文献10

  • 1ISERMANN R. Supervision, fault-detection and fault - diagnosis methods-An introduction [ J ]. Control Engineering Practice, 1997,5 ( 5 ) :639-652.
  • 2李晗,萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策,2011,26(1):1-9. 被引量:262
  • 3曹龙汉,武明亮,何俊强,刘璐,刘小丽.基于DE-SVM的柴油机气门故障诊断方法及应用[J].仪器仪表学报,2011,32(2):323-328. 被引量:8
  • 4HUANG Jian, HU Xiaoguang, YANG Fan. Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker[J]. Measurement,2011,44(6) :1 018-1 027.
  • 5萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85
  • 6刘叶青,刘三阳,谷明涛.一种改进的支持向量机增量学习算法[J].计算机工程与应用,2008,44(10):142-143. 被引量:3
  • 7CRISTIANINI N,SHAWE T J. An introduction to support vector ma- chines and other kernel-based learing methods [ M ]. Cambridge : Cambridge University Press,2000.
  • 8VAPNIK V N. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 1995.
  • 9PRONOBIS A, LUO J, Caputo B. The more you learn, the less you store:Memory-controlled incremental SVM for visual place recogni- tion [ J ]. Image and Vision Computing,2010,28 ( 7 ) : 1 080-1 097.
  • 10SHI Lei,MA Xinming,XI Lei,et al. Rough set and ensemble learn- ing based semi-supervised algorithm for text classification[ J ]. Expert Systems with Applications,2011,38 (5) :6 300-6 306.

二级参考文献79

  • 1王晓丹,郑春颖,吴崇明,张宏达.一种新的SVM对等增量学习算法[J].计算机应用,2006,26(10):2440-2443. 被引量:21
  • 2PENG Xiyuan WU Hongxing PENG Yu.Parameter Selection Method for SVM with PSO[J].Chinese Journal of Electronics,2006,15(4):638-642. 被引量:4
  • 3赵光权,彭喜元,孙宁.带局部增强算子的微分进化改进算法[J].电子学报,2007,35(5):849-853. 被引量:30
  • 4Burges C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998,2(2): 127-167.
  • 5Vapnik V.Statistical learning theory[M].New York: Springer Verlag, 1995.
  • 6Vapnik V N.The nature of statistic learning theory[M].New York: Springer Verlag, 1995.
  • 7Isermann R, Balle E Trends in the application of model based fault detection and diagnosis of technical processes[J]. Control Engineering Practice, 1997, 5(5): 709-719.
  • 8Parthasarathy K, Jay H L. Diagnostic tools for multivariable model-based control system[J]. Industrial and Engineering Chemistry Research, 1997, 36(7): 2725- 2738.
  • 9Anne Raich, Ali Cinar. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes [J]. AIChE J, 1996, 42(4): 995-1009.
  • 10Jie Chen, Ron J. Patton. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 1999.

共引文献354

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部