期刊文献+

马尔可夫逻辑网在信息抽取中的应用 被引量:1

Application of Markov Logical Networks in Information Extraction
原文传递
导出
摘要 提出了一个基于马尔可夫逻辑网的信息抽取方法,将所有记录的分割和记录去重在一个单独的整合推理过程中进行。由于采用马尔可夫逻辑和现有的推理算法,其主要工作是编写合适的逻辑公式,工程量比其他传统方法少得多。实验基于CiteSeer和Cora这两个引文匹配数据集,其结果要明显优于之前的其他方法,同时也证明了马尔可夫逻辑网模型的精确性。 A method based on Markov logic network is proposed for information extraction. The tasks of segmentation and de - duplication of all records are performed together in a single integrated inference process. Taking the advantage bf the Markov logic and existing reasoning al- gorithm, the major job is to carry out appropriate logical formulas, of which engineering is much less than other traditional methods. The exper- iment is performed based on the two CiteSeer and Cora datasets for citation matching. Experimental results show that the method is superior to prevenient ones,with the accuracy of MLN model proved.
出处 《世界科技研究与发展》 CSCD 2013年第4期465-468,共4页 World Sci-Tech R&D
基金 国家自然科学基金(60403009) 中央高校基本科研业务费(CDJZR10180021)资助
关键词 信息抽取 马尔可夫逻辑网 联合推理 引文匹配 information extraction Markov logical networks joint inference' citation matching
  • 相关文献

参考文献12

  • 1PASULA H, MARTHI B, MILCH B, et al. Identity Uncertainty and Citation Matching [ J ]. Advances in Neural Information Processing Systems ,2003,15 : 1 425-1 432.
  • 2WELLNER B, MCCALLUM A, PENG F, et al. An integrated condi- tional model of information extraction and conference with application to citation matching[ C ]. Proceedings of the 20th conference on Un- certainty in artificial intelligence. Banff, Canada ,2004:593-601.
  • 3SANDEEPKUMAR S, SAHELY B, SUNDARARAJAN S, et al. Web information extraction using Markov logic networks [ C 1. Proceedings of the 17th ACM SIGKDD international conference on Knowledge dis- covery and data mining. San Diego, CA ,2011 : 1 406-1 414.
  • 4LAWRENCE S, BOLLACKER K, GILES C L. Autonomous citation matching[ C ]. Proceedings of the third annual conference on Autono- mous Agents. New York, USA : ACM, 1999:392-393.
  • 5DOMINGOS P, RICHARDSON M. Markov Logic: A Unifying Frame- work for Statistical Relational Learning [ C ]. Twenty - first Interna- tional Conference on Machine Learning. Banff, Canada ,2004:49-54.
  • 6孙舒杨,刘大有,孙成敏,黄冠利.统计关系学习模型Markov逻辑网综述[J].计算机应用研究,2007,24(2):1-3. 被引量:7
  • 7HUYNH,T N, MOONEY, R J. Discriminative structure and parameter learning for Markov logic networks[ C ]. Proceedings of the 25th Inter- national Conference on Machine Learning. Helsinki, Finland, 2008 : 416-423.
  • 8RICHARDSON M, DOMINGOS P. Markov logic networks [ J ]. Ma- chine Learning,2006,62 ( 1-2 ) : 107-136.
  • 9KIRKPATRICK S, GELATI" C D, VECCHI M P. Optimization by sim- ulated annealing [ J ]. Science, 1983,220 (4 598) :671-680.
  • 10LOWD D, DOMINGOS P. Efficient weight learning for Markov logic networks [ C ]. Proceedings of the 11 th European Conference on Prin- ciples and Practice of Knowledge Discovery in Databases. Warsaw, Poland : Lecture Notes in Computer Science ,2007:200-211.

二级参考文献22

  • 1R Durbin,S Eddy,A Krogh,et al.Biological Sequence Analysis:Probabilistic Models of Proteins and Nucleic Acids[M].London:Cambridge University Press,1998.
  • 2P Domingos.Prospects and Challenges for Multi-relational Data Mining[J].ACM-SIGKDD Explorations:Special Issue on Multi-Relational Data Mining,2003,5(1):80-83.
  • 3L Holder,D Cook.Graph-based Relational Learning:Current and Future Directions[J].ACM-SIGKDD Explorations:Special Issue on Multi-Relational Data Mining,2003,5(1):90-93.
  • 4P Dempster,et al.Maximum Likelihood from Incomplete Data via the EM Algorithm[J].J.Royal Stat.Soc.,1977,B39:1-39.
  • 5J Neville,et al.Learning Relational Probability Trees[A].Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining[C].New York:ACM Press,2003.625-630.
  • 6L De Raedt,K Kersting.Probabilistic Logic Learning[J].ACMSIGKDD Explorations:Special Issue on Multi-Relational Data Mining,2003,5(1):31-48.
  • 7刘大有,齐红,孙舒杨,等.统计关系学习综述[A].中国人工智能学会第11届全国学术年会论文集:中国人工智能进展[C].北京:北京邮电大学出版社,2005.241-253.
  • 8M Richardson,P Domingos.Markov Logic Networks[D].Seattle,Washington,USA:Department of Computer Science and Engineering,University of Washington,2004.
  • 9P Domingos,M Richardson.Markov Logic:A Unifying Framework for Statistical Relational Learning[C].Banff,Canada:Proceedings of the ICML-2004 Workshop on Statistical Relational Learning and Its Connections to Other Fields,2004.49-54.
  • 10S Kok,P Domingos.Learning the Structure of Markov Logic Networks[A].Proceedings of the 22nd International Conference on Machine Learning[C].Bonn,Germany:ACM Press,2005.441-448.

共引文献6

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部