期刊文献+

椭圆三体问题中的时间周期不变流形 被引量:2

Time-Periodic Invariant Manifold in the Elliptic Three Body Problem
下载PDF
导出
摘要 借助有限时间Lyapunov指数(FTLE)定义拉格朗日拟序结构(LCS),并以单摆系统为例阐述LCS与动力系统中不变流形之间的联系.利用LCS研究椭圆限制性三体问题(ER3BP)中的时间周期不变流形的性质.采用数值方法验证得到了两点结论:时间周期不变流形的内部是穿越轨道集,外部是非穿越轨道集;时间周期不变流形是轨道的不变集. Lagrangian coherent structure(LCS) is defined by means of ridges of finite-time Lyapunov exponent(FTLE) fields in this paper.Moreover,a relation between LCS and time-dependent invariant manifold is obtained.Taking LCS as a tool,the property of the invariant manifold in elliptic restricted 3-body problem(ER3BP) is achieved numerically: time-dependent invariant manifold is an invariant set of orbits and acts as the separatrix of transit-orbit set and non-transit orbit set.
作者 祁瑞 徐世杰
出处 《空间控制技术与应用》 2013年第2期6-9,47,共5页 Aerospace Control and Application
基金 国家自然科学基金资助项目(11172020)
关键词 椭圆限制性三体问题 时间周期不变流形 拉格朗日拟序结构 POINCARE截面 elliptic restricted 3-body problem time-dependent invariant manifolds Lagrangian coherent structures Poincare section
  • 相关文献

参考文献8

  • 1Qi R,Xu S J,Xu M.Impulsive control for formation flight about libration points[J].Journal of Guidance,Control,and Dynamics,2012,35(2):484-496.
  • 2Koon W S,Lo M W,MarsdenJ E,RossS D.Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics[J].Chaos,2000,10:427-469.
  • 3Parker T S,Chua L O.Practical numerical algorithms for chaotic systems[M].New York:Springer-Verleg,1989.
  • 4Shadden S C,Lekien F,Marsden J E.Definition and properties of Lagrangian coherent structures from finitetime Lyapunov exponents in two-dimensional aperiodic flows[J].Physica D,2005,212:271-304.
  • 5Haller G.Distinguished material surfaces and coherent structures in three-dimensional fluid flows[J].Physica D,2001,149:248-277.
  • 6Gawlik E S,Du Toit P C,Campagnola S,et al.Lagrangian coherent structures in the planar elliptic restricted three-body problem[J].Celestial Mechanics and Dynamical Astronomy,2009,103:227-249.
  • 7Qi R,Xu S J,Zhang Y,Wang Y.Earth-to-moon low energy transfer using time-dependent invariant manifolds[C].AIAA/AAS Astrodynamics Specialist Conference,Minneapolis,Minnesota,August 13-16,2012.
  • 8Szebehely V G.Theory of orbits:the restricted problem of three bodies[M].New York:Academic Press,1967.

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部