期刊文献+

关于不完全平方数的算术平方根的算法及其C^(++)实现

The Arithmetic of Imperfect Square Root's and Algorithm Implementation of C^(++) Language
下载PDF
导出
摘要 获得了任意不完全平方数的算术平方根化为无限循环连分数的4条定理,给出了不完全平方数的算术平方根化无限循环连分数的算法,对其算术平方根的有理数近似分数给出了算法和分析了误差,并给出了以上无限循环连分数和有理数近似值及其误差的C++语言的算法实现. This article makes some explorations on the regulations of transforming any imperfect square's arithmetic square root into an infinite loop continued fraction, and provides the arithmetic of transforming any imperfect square into an infinite loop continued fraction, presents the arithmetic about arithmetic square root's rational approximate value, analyzes the reason of it's error, distinguishes the infinite loop continued fraction and it's rational approximate value which mentioned in this article and the arithmetic of it's error by the methods of the language of C++.
作者 彭馨慧
出处 《陇东学院学报》 2013年第5期7-10,共4页 Journal of Longdong University
关键词 不完全平方数 无限循环连分数 误差 imperfect square infinite loop continued fractions error
  • 相关文献

参考文献4

二级参考文献11

  • 1李学生,徐利梅,陈敏,王莹.基于ADSP-BF533的声频定向算法实现[J].微计算机信息,2006,22(05Z):176-178. 被引量:3
  • 2H J J te Riele. Factoring Large Number: Fun or Applied Science? [DB/OL]. http://www. cwi.nl/publications/ annual-reports/1999/AR/PDF/factoring.pdf,2003-02-07.
  • 3Adrien-Marie Legendre. Recherches d′analyse indeterminee[J]. Histoire de L′Academie Royale des Sciences,1785,10:465-559.
  • 4Daniel J Bernstein.Pippenger′s exponentiation algorithm[J]. Mathematics Subject Classification Primary, 1991, 11.
  • 5Daniel J Bernstein.Faster square roots in annoying finites fields[J].Mathematics Subject Classification Primary,1991,11.
  • 6Martin M Johansen. Exponentiation with Addition Chains[DB/OL].http://www.daimi.au.dk /~mmj /crypt/addchain /addchain.pdf,2003-03-01.
  • 7George E Andrews. The Number Theory[M]. 北京:世界出版社,1988.
  • 8F. Smarandache. Only problems not solutions. Chicago[M]. Xiquan Publishing House, 1993,74.
  • 9He Xiaolin. Guo Jinbao,On the 80-th problem of F. Smarandache (I)[J]. Smarandache notions journal,2004,14:70
  • 10T. M. Apostol. Introduction to analytic number theory[M]. New York :Springre-Verlag, 1976.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部