期刊文献+

多孔材料负载KHCO_3吸附剂的结构表征 被引量:2

Structure Characterization of Porous Materials Loading with Potassium Bicarbonate
下载PDF
导出
摘要 为了探究活性炭颗粒、分子筛、活性氧化铝颗粒3种多孔材料负载KHCO3后负载率及孔径情况,实验对负载KHCO3的3种材料进行了结构表征,着重对KHCO3负载率、多孔材料负载前后比表面积、总孔容积以及附着情况展开研究。通过氮吸附进行分析,发现活性炭负载后比表面积变小,负载率与比表面积成反比,但大于其他2种多孔材料。总孔容积在负载后同样都有所下降,活性炭下降幅度最小,活性炭主要被活性组填充了0—100nm之间的孔,而分子筛与氧化铝主要被填充了0-250nm的孔;利用扫描电镜和等高图分析KHCO3负载后在多孔材料上的附着情况,发现活性炭不仅孔隙表面附着颗粒,而且内部也粘附了许多类似结晶结构的碎屑及晶状体,同时还能看清活性炭孔径轮廓,孔径没有堵塞的现象,而分子筛和氧化铝负载之后,有大量的颗粒碎屑堆积在表面,已看不清楚表面轮廓,有堵塞孔径的现象。 To explore load rate and aperture of three kinds of porous materials such as activated carbon particles, molecular sieve and activated alumina particles loaded with KHCO3, the experiment was done for the structure characterization of KHCO3 loaded materials, with focus on load rate of KHCO3, specific surface area, total pore volume and adhesion. Through nitrogen adsorption analysis, it was found that specific surface area of the activated carbon after loading was smaller, load rate and specific surface area was inversely proportional, but more than the other porous materials. After loading the total pore volume was also declined, with activated carbon mainly filled by active group between hole of 0-100 nm, while molecular sieve and alumina mainly filled with 0-250 nm hole. Scanning electron microscopy and contour map analysis of the situation of adhesion indicated that the activated carbon is not only pore surface adhered particle and adhere many similar crystal structure of clastics and lens in inside, also aperture outline of activated carbon and aperture blocking can be seen, but molecular sieve and alumina have a large number of particle clastics accumulation in the surface, clearly surface and aperture blocking cannot be seen.
出处 《环境科学与技术》 CAS CSCD 北大核心 2013年第8期21-24,40,共5页 Environmental Science & Technology
基金 国家自然科学基金项目(51076068) 江苏省自然科学基金(BK2010569) 江苏省高校自然科学基金项目(10KJB610007) 江苏省高校科研成果产业化推进项目(JHB2011-14) 江苏省"青蓝工程"中青年学术带头人项目 江苏高校优势学科建设工程资助项目
关键词 负载率 比表面积 总孔容积 空隙结构 load rate specific surface area total pore volume pore structure
  • 相关文献

参考文献16

  • 1潘佳佳,李廉水.中国工业二氧化碳排放的影响因素分析[J].环境科学与技术,2011,34(4):86-92. 被引量:61
  • 2路路,郭秀锐.电力行业低碳减排对策的研究进展[J].环境科学与技术,2010,33(S2):355-359. 被引量:6
  • 3Steeneveldt R. CO., capture and storage:closing the knowing-dioxide gap[J]. Chemical Engineering Research and Design, 2006, 84( 9 ) : 739-763.
  • 4Hayashi H, Hirano S, Shigemoto N, et al. Characterization of potassium carbonate supported on porous materials and the application to the recovery of carbon dioxide from flue gases under moist conditions[J]. Nippon Kagaku Kaishi, 1995, 12:1006-1012.
  • 5Lee S C, Choi B Y, Lee T J, et al. CO2 absorption and regeneration of alkali metal-based solid sorbents[J]. Catalysis Today, 2006, 111 (2): 385-390.
  • 6Lee S C, Chae H J, Lee S J, et al. Novel regenerable potassium-based dry sorbents for CO2 capture at low temperatures [J]. Journal of Molecular Catalysis B :Enzymatic, 2009, 56 (2-3):179-184.
  • 7Lee S C, Choi B Y, Lee T J, et al. CO2 absorption and regeneration of alkali metal-based solid sorbents[J]. Catalysis Today, 2006,111 : 385-390.
  • 8Lee S C, Chae H J, Lee S J, et al. Development of regenerable MgO-based sorbent promoted with KzCO3 for CO2 capture at low temperatures[J]. Environ Sci Technol, 2008, 42: 2736-2741.
  • 9Seo Y W, Jo S H, Ryu C K, et al. Effects of steam and temperature on CO2 capture using a dry regenerable sorbent in a bubbling fluidized bed[J]. Korean Chem Eng Res, 2005, 43 (4) : 537-541.
  • 10Seo Y W, Jo S H, Ryu C K, et al. Effects of water vapor pretreatment time and reaction temperature on CO2 capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor[J]. Chemosphere, 2007, 69(5):712-718.

二级参考文献55

共引文献87

同被引文献27

  • 1晏水平,方梦祥,张卫风,骆仲泱,岑可法.烟气中CO_2化学吸收法脱除技术分析与进展[J].化工进展,2006,25(9):1018-1024. 被引量:109
  • 2邹文樵 冯仰婕.碳酸氢钠热分解反应非等温动力学研究.华东化工学院学报,1988,14(2):158-163.
  • 3Brunetti A,Scura F,Barbieri G,et al.Membrane technologies for CO2separation[J].Journal of Membrane Science,2010,359:115-125.
  • 4David B,Petter N,Gunhild A G.Low-temperature syngas separation and CO2capture for enhanced efficiency of IGCC power plants[J].Energy Procedia,2011(4):1260-1267.
  • 5Liang Y,Harrison D P,Gupta R P,et al.Carbon dioxide capture using dry sodium-based sorbents[J].Energy and Fuels,2004,18(2):569-575.
  • 6Green D A,Turk B S,Portze r J W,et al.Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents[R].North Carolina:Research Triangle Institute,2005.
  • 7Lee S C,Choi B Y,Lee T J,et al.CO2absorption and regeneration of alkali metal-based solid sorbents[J].Catalysis Today,2006,111(3/4):385-390.
  • 8Lee S C,Choi B Y,Lee T J,et al.Novel regenerable potassium-based dry sorbents for CO2capture at low temperatures[J].Journal of Molecular Catalysis B:Enzymatic,2009,56(2/3):179-184.
  • 9Lee S C,Chae H J,Choi B Y,et al.The effect of relative humidity on CO2capture capacity of potassium-based sorbents[J].Korean Journal of Chemical Engineering,2011,28(2):480-486.
  • 10Zhao C W,Chen X P,Zhao C S.K2CO3/Al2O3for capturing CO2 in flue gas from power plant part 1:carbonation behaviors of K2CO3/Al2O3[J].Energy&Fuels,2012,26(2):1401-1405.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部