期刊文献+

水汽浓度变化对温室效应影响的定量分析 被引量:6

Impacts of Water-vapor Concentration Variation on Greenhouse Effect:Quantitative Analysis
下载PDF
导出
摘要 为了考察大气水汽浓度变化对温室效应的影响,以全球大气温度探空数据集RATPAC-A为基础,对流层采用固定相对湿度的假设,并根据平流层水汽的历史变化趋势,进行了定量研究。结果表明,对流层绝对湿度的增加,会造成其各处向上出射长波通量的减少,并在层顶处达到最大,且对流层顶水汽含量的变化,对于向上长波通量的影响最为显著;如果地表温度升高1 K,大气水汽浓度增加所导致的对流层顶向上长波通量的减小值为2.22 W/m2,对流层水汽含量变化与地表温升之间存在着强烈的正反馈关系,有能力使二氧化碳所造成的温室效应进一步增强50%;平流层水蒸汽体积浓度每上升1×10-6,将会使对流层顶的向下长波通量增加0.31 W/m2。 A quantitative analysis referring to impacts of the variation of water-vapor concentration in atmosphere on greenhouse effect was conducted based on RATPAC-A, the global atmosphere temperature radiosonde dataset, and the trend analysis of water vapor variation in stratosphere, with the assumption that relative humidity in troposphere is fixed. Findings of the quantitative analysis suggested that increases of troposphere absolute humidity would cause reduction of the upward outgoing long-wave flux in troposphere, which could reach the zenith at the tropopause; if ground surface temperature increases by 1 K, the reduction of upward long-wave flux would be 2.22 W/m2, indicating that there existed a strong positive feedback between concentration variation of water vapor in troposphere and the increase of ground surface temperature, thus enabling the greenhouse effect resulted from CO2 to be enhanced by 50%. On the other hand, in cases when water vapor concentration in stratosphere is raised by 1 ×10-6, an increase of downward long-wave flux at tropopause could accordingly attain 0,31 W/m2.
出处 《环境科学与技术》 CAS CSCD 北大核心 2013年第8期182-186,共5页 Environmental Science & Technology
基金 国家自然科学基金(51076107) 上海市重点学科建设项目(S30503)
关键词 水汽 温室效应 定量 正反馈 water vapor greenhouse effect quantification positive feedback
  • 相关文献

参考文献17

  • 1Solomon S, Qin D, Manning M, et al. Intergovernmental Panel on Climate Change, Climate Change 2007:The Physical Science Basis[M]. New York:Cambridge University Press, 2007: 591-662.
  • 2Kiehl J T, Trenberth K E. Earth's annual global mean energy budget[J]. Bulletin of American Meteorological Society, 1997, 78(2 ) : 197-208.
  • 3任国玉.气候变暖成因研究的历史、现状和不确定性[J].地球科学进展,2008,23(10):1084-1091. 被引量:41
  • 4Free M, Seidel D J, Angell J K, et al. Radiosonde atmospheric temperature products for assessing climate (RATPAC):a new dataset of large-area anomaly time series[J]. Journal of Geophysical Research, 2005, 110: D22101.
  • 5Lanzante J R, Klein S A, Seidel D J. Temporal homoge- nization of monthly radiosonde temperature data. part I: methodology[J]. Journal of Climate, 2003, 16(2) : 224-240.
  • 6Free M, Angell J K, Durre I, et al. Using first differences to reduce inhomogeneity in radiosonde temperature datasets [J]. Journal of Climate, 2004, 17(21): 4171-4179.
  • 7Ramaswamy V, Schwarzkopf M D, Randel W J, et al. Anthropogenic and natural influences in the evolution of lower stratospheric cooling [J]. Science, 2006, 311 (5764) : 1138- 1141.
  • 8胡永云,夏炎,高梅,吕达仁.21世纪平流层温度变化和臭氧恢复[J].气象学报,2008,66(6):880-891. 被引量:20
  • 9McCarthy, Mark P, Thome P W, et al. An analysis of tropospheric humidity trends from radiosondes [J]. Journal of Climate, 2009, 22(22 ):5820-583.
  • 10Dessler A E, Zhang Z, Yang P. Water-vapor climate feed- back inferred from climate fluctuations, 2003-2008[J]. Geophysical Research Letters, 2008, 35(10) :L20704.

二级参考文献71

共引文献59

同被引文献123

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部