期刊文献+

铝掺杂ZnMnO纳米晶体的载流子调控钵磁性

Carriers-assisted Enhanced Ferromagnetism in AI-doped ZnMnO Nano-crystallites
下载PDF
导出
摘要 通过溶胶一凝胶自燃烧技术合成了Zn0.95~xAlxMn0.050(x=0、0.03、0.055和0.07)稀磁半导体材料.并且研究了Al掺杂对Zn0.95-xAlxMn0.05O结构、电学和磁学性质的效果.X射线衍射显示合成的组合物为单相六方晶系纤锌矿型晶体结构,类似于氧化锌.显微图像显示颗粒呈团簇状,但一些单个颗粒呈现六角形纹理.观察到的电阻率随温度升高(达450℃)而降低,显示为半导体行为特征.所有组合物具有室温铁磁行为.饱和磁化强度的值随着Al(载流子)浓度的增加而增加. Zn0.95-zAlxMn0.050 (x=0, 0.03, 0.05, and 0.07) dilute magnetic semiconductor materials have been synthesized by sol-gel auto-combustion technique. The effect of A1 doping on the structural, electrical, and magnetic properties has been investigated. X-ray diffraction studies demonstrate the existence of single phase characteristic hexagonal wurtzite type crystal structure, similar to the host ZnO, in all the synthesized compositions. Although, the microscopic images revealed that the grains were clustered, yet some individual grains could be seen to have hexagonal texture. Electrical resistivity was observed to decrease with the rise of temperature up to 450 ℃, depicting the characteristic semiconductor behavior. Room temperature ferromagnetic behavior was observed in all the compositions. The value of saturation magnetization increased with the increase of A1 concentration in ZnMnO system referred to the gradual enhancement of free carriers.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第4期457-461,J0002,共6页 化学物理学报(英文)
关键词 稀磁半导体材料 溶胶-凝胶 Al掺杂ZnMnO 铁磁性 Diluted magnetic semiconductor, Al-doped ZnMnO, Sol-gel, Ferromagnetism
分类号 O [理学]
  • 相关文献

参考文献27

  • 1X. C. Liu, E. W. Shi, Z. Z. Chen, T. Zhang, Y. Zhang, B. Y. Chen, W. Huang, X. Liu, L. X. Song, K. J. Zhou, and M. Q. Cui, Appl. Phys. Lett. 92, 042502 (2008).
  • 2A. Goktas, I. H. Mutlu, Y. Yamada, and E. Celik, J. Alloys Compd. 553, 259 (2013).
  • 3J. Elanehezhiyan, K. P. Bhuvana, N. Gopalakrishnan, and T. Balasubramanian, Mater. Lett. 62, 3379 (2008).
  • 4M. Saleem, S. A. Siddiqi, S. Atiq, and S. Naseem, J. Korean Phys. Soc. 60, 1772 (2012).
  • 5Y. M. Zou, W. Tong, and Z. Qu, Chin. J. Chem. Phys. 24, 340 (2on).
  • 6V. K. Sharma and G. D. Varma, Cryst. Res. Technol. as, 1046 (2008).
  • 7D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachary, L. Salamanca-Riba, and T. Venkate- san, Nat. Mater. 3. 707 (2004).
  • 8S. W. Lim, M. C. Jeong, M. H. Ham, and J. M. Myoung, Jpn. J. Appl. Phys. 43, L280 (2004).
  • 9S. W. Jung, S. J. An, G. C. Yi, C. U. Jung, S. Lee, and S. Cho, Appl. Phys. Lett. 80, 4561 (2002).
  • 10T. kumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78, 958 (2001).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部