期刊文献+

带指数的多乘积约束下多项式函数的全局最优解

Global Minimization of a Polynomial Function Under Additional Multiplicative Constraints with Exponent
下载PDF
导出
摘要 对广泛应用于金融、证券投资等实际问题中的带指数的多项式函数的极小值问题(P1)提出了一种有效的全局优化算法.从理论上证明了本算法的收敛性,数值实验表明提出的方法是可行和有效的. An efficient optimization algorithm for globally solving a polynomial function minimization under additional multiplicative constraints with exponent can be applied to such as finance and investment pratical problems, theoretically, the proof which the proposed branch and bound algorithm is convergent to the global minimum is provided. And the numerical ex- periments illustrate the feasibility and eficienc of the proposed algorithm.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2013年第4期1-4,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11171094) 河南师范大学青年科学基金(01016400003 2011QK02) 河南省基础与前沿技术研究项目(132300410285)
关键词 全局最优化 带指数的多乘积约束 分枝定界 多项式函数 global optimization additional multiplicative constraints with exponent branch and bound polynomial funtion
  • 相关文献

参考文献8

  • 1陈永强,张曙光.全局求解符号线性比式和问题[J].河南师范大学学报(自然科学版),2011,39(2):20-23. 被引量:1
  • 2陈永强,程维新.利用单调函数求线性乘性规划的全局最优解[J].河南师范大学学报(自然科学版),2011,39(5):35-37. 被引量:1
  • 3陈玉花,李晓爱,申培萍.一类非凸规划的分支定界算法[J].河南师范大学学报(自然科学版),2012,40(3):6-10. 被引量:2
  • 4Benson H P. Decomposition Branch-and-Bound Based Algorithm for Linear Programs with Additional Multiplicative Constraint[J]. J Op- tim Theory Appl, 2005,126 : 41-61.
  • 5Thoai N V. Convergence and Application of a Decomposition Method Using Duality Bounds for Nonconvex Global Optimization[J]. J Op- tim Theory Appl, 2002,113 : 165-193.
  • 6Peiping S, Minna G. A Duality-Bounds Algorithm for Nonconvex QuadraticPrograms with Additional Multiplicative Constraints[J]. Ap- plied Mathematics and Computation, 2008,198 (1) : 1-1 1.
  • 7Shen P P, Ma Y, Chen Y Q. Global optimization for the generalized polynomial sum of ratios problem[J]. Journal of Global Optimiza tion, 2011,50(3) :439-455.
  • 8Gao Y. An outcome space finite algorithm for solving linear muhiplicative programming[J]. Applied Mathematics and Computation, 2006, 179:494- 505.

二级参考文献12

  • 1Shen P P, Ma Y, Chen Y Q. A robust algorithm for generalized geometric programming[J]. Journal of Global Optimization, 2008,41 (4) : 593-612.
  • 2Gao Y. An outcome-space finite algorithm for solving linear multiplicative programming[J]. Applied Mathematics and Computation,2006, 179:494-505.
  • 3Cambinil R, Sodini C. Decomposition methods for solving nonconvex quadratic programs via branch and bound[J]. Journal of Global Opti-mization, 2005,33 : 313-336.
  • 4Rosen J B, Pardalos P M. Global minimization of large scale constrained concave quadratic problems by separable programming[J]. Math ematics Programming, 1986,34 : 163-174.
  • 5Raber U. A simplicial branch-and-bound method for solving noneonvex all quadratic programs[J]. Journal of Global Optimization, 1998, 13=417 432.
  • 6Audet C, Hansen P, Jaumard B, et al. A branch and cut algorithm for nonconvex quadratically constrained quadratic programming[J]. Mathematics Programming,2000,87 .- 131-152.
  • 7H. P. Benson. On the Global Optimization of Sums of Linear Fractional Functions over a Convex Set[J] 2004,Journal of Optimization Theory and Applications(1):19~39
  • 8H. P. Benson. Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem[J] 2002,Journal of Optimization Theory and Applications(1):1~29
  • 9申培萍,裴永刚,段运鹏.一类非线性比式和问题的对偶界方法[J].河南师范大学学报(自然科学版),2008,36(3):131-133. 被引量:5
  • 10申培萍,刘晓,李卫敏.一类多乘积规划问题的对偶界方法[J].河南师范大学学报(自然科学版),2009,37(1):168-170. 被引量:4

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部