期刊文献+

一个自动调节参数3阶收敛的抛物线法公式

A Third-order Parabola Method Formula with Auto-tuning Parameter
下载PDF
导出
摘要 提出了一个自动调节参数、3阶收敛的抛物线法公式,其每步迭代只需计算2个函数值,避免了导数值的计算.数值实验表明,该方法与具有同阶收敛性质的算法相比效率更高. This paper presents a parabola method formula with auto-tuning parameter for solving nonlinear equations, the method avoids calculating derivative, and has third-order convergence. Numerical examples show that our method can com- pete with the other third-order methods.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2013年第4期13-15,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省精品课程项目资助 河南省基础与前沿技术研究计划项目(132300410285)
关键词 非线性方程 迭代方法 收敛阶 自动调节 nonlinear equation iterative methods convergence of order auto-tuning
  • 相关文献

参考文献11

  • 1杨明波.具有参数超平方收敛的抛物线法公式类[J].河南师范大学学报(自然科学版),2011,39(5):16-19. 被引量:1
  • 2Ostrowski A M. Solution of Equations in Euclidean and Banach Space[M]. San Diego: Academic Press, 1973.
  • 3Halley E. A New, Exact and Easy Method for Finding the Roots of Any Equations Generally, without Any Previous Reduction[J]. Phi- los Roy Soc Lond,1964,18(1):136-148.
  • 4Gutierrez J M, Herandez M A. A Family of Chebyshev-Halley Type Methods in Banach Spaces[J]. Bull Aust Math Soc, 1997,55:113- 130.
  • 5Amat S, Busquier S, Gutierrez J M. Geometric Constructions of Iterative Functions to Solve Nonlinear Equations[J]. J Comput Appl Math,2003,151(1) :197-205.
  • 6Chun Chang-bum. Some third-order families of iterative methods for solving nonlinear equation[J]. Applied Mathematics and Computa- tion, 2007,188(1) : 924-933.
  • 7Chun Chang-burn. Some Variants of Chebyshev-Halley Methods Free from Second Derivative[J]. Appl Math Comput,2007,191(1) :193- 198.
  • 8Chun Chang-bum. Some Second Derivative-Free Variants of Chebyshev-Halley Methods[J]. Appl Math Comput, 2007,191 (2) : 410-414.
  • 9Kou Ji-sheng, LI Yi-tian. Modified Chebyshev's Method Free from Second Derivative for Non-linear Equations[J]. Appl Math Comput, 2007,187 (2) : 1027-1032.
  • 10Zhou Xiao-jian. Modified Chebyshev-Halley Methods Free from Second Derivative[J]. Applied Mathematics and Computation,2008,203 (2) :824-827.

二级参考文献22

  • 1刘长安.超平方收敛的2步法公式[J].纯粹数学与应用数学,2000,16(4):92-98. 被引量:6
  • 2王霞,赵玲玲,李飞敏.牛顿方法的两个新格式[J].数学的实践与认识,2007,37(1):72-76. 被引量:36
  • 3Traub J F. Iterative Methods for the Solution of Equations [ M ].Englewood Cliffs: Prentice-Hall, 1964.
  • 4Frontini M, Sormani E. Some Variants of Newton' s Method with Third-Order Convergence [ J ]. Appl Math Comput, 2003, 140(2/3) : 419-426.
  • 5Burden R L, Faires J D. Numerical Analysis [ M]. Pacific Grove: Brooks Cole, 2001.
  • 6Amat S, Busquier S, Guti6rrez J M. Geometric Constructions of Iterative Functions to Solve Nonlinear Equations [ J ]. J Comput Appl Math, 2003, 157: 197-205.
  • 7Abbasbandy S. Improving Newton-Raphson Method for Nonlinear Equations by Modified Adomian Decomposition Method [J]. Appl Math Comput, 2003, 145(2/3) : 887-893.
  • 8CHUN Chang-bum. Iterative Methods Improving Newton' s Method by the Decomposition Method [ J ]. Comput Math Appl, 2005, 50(10/11/12): 1559-1568.
  • 9Adomian G. Nonlinear Stochastic Systems Theory and Applications to Physics [ M ]. Dordrecht: Kluwer Academic Publishers, 1989.
  • 10FANG Tie-gang, GUO Fang, Lee C F. A New Iterative Method with Cubic Convergence to Solve Nonlinear Algebraic Equations . Appl Math Comput, 2006, 175 : 1147-1155.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部