期刊文献+

带多个切换的Filippov系统极限环在扰动下的保持性 被引量:3

Persistence of limit cycles in Filippov systems with multiple switching lines
原文传递
导出
摘要 本文讨论了一类含有有限多条切换线的平面Filippov系统极限环在扰动下的保持性.假设该类平面Filippov系统的未扰系统含有一个极限环且它分别与每一条切换线横截相交一次,作者应用Diliberto定理和由此引出的变分引理导出了极限环的特征指标的计算公式,并利用该公式讨论了系统极限环的稳定性及其在扰动下保持的条件. In this paper we discuss the persistence of the limit cycle in a class of planar Filippov systems with multiple switching lines. The authors assume that the unperturbed system of the planar Filippov systems has a limit cycle that crosses every switching line transversally exactly once. By using Diliberto Theorem and Variation Lemma we derived the formula for the characteristic exponent. Then we give a condition for the stability and persistence of the limit cycle.
作者 胡楠
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期698-702,共5页 Journal of Sichuan University(Natural Science Edition)
基金 中央高校基本科研业务费专项基金(2010SCU21005)
关键词 Filippov系统 极限环 切换 Filippov system limit cycle switching line
  • 相关文献

参考文献11

  • 1AstrOm K J. Oscillations in systems with relay feed- back [J]. IMA Vol Math Appl. : Adaptive Control, Filtering, and Signal Processing, 1995, 74: 1.
  • 2Bernardo M D, Feigin M I, Hogan S J, Homer M E. Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems [J]. Chaos, Solitons and Fractals, 1999, 10: 1881.
  • 3Banerjee S, Verghese G. Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control [M]. New York: Wiley-IEEE Press, 2001.
  • 4Dankowicz H, Jerrellncl J. Control oI near-grazing dynamics in impact oscillators [J]. Proe R Soe Lon- don Set A, 2005, 461. 3365.
  • 5包伯成,刘中,许建平.一类超混沌系统电路实现及其动力学分析[J].四川大学学报(工程科学版),2010,42(2):182-187. 被引量:17
  • 6Du Z, Li Y, Zhang W. Bifucation of periodic orbits in a class of planar Filippov systems [J]. Nonlinear Analysis, 2008, 69: 3610.
  • 7Leine R I, van Campen D H. Bifurcation phenomena in non-smooth dynamical systems [J]. European Journal of Mechanics A/Solids, 2006, 25: 595.
  • 8Akhmet M U, Arugaslan D. Bifurcation of a non- smooth planar limit cycle from a vertex [J]. Nonlin- ear Analysis, 2009, 71: 2723.
  • 9舒永录,张付臣,杨洪亮.一个新的多维超混沌系统及其性质研究[J].四川大学学报(自然科学版),2011,48(4):857-864. 被引量:19
  • 10刘晓君,李险峰,杨丽新,丁恒飞.带有未知参数的改进半导体激光器的自适应同步与反同步(英文)[J].四川大学学报(自然科学版),2012,49(1):168-174. 被引量:4

二级参考文献25

  • 1LIAO Xiaoxin 1, 2, 3 , FU Yuli 4 & XIE Shengli 4 1. Department of Control Science & Control Engineering, Huazhong University of Science & Technology, Wuhan 430074, China,2. School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China,3. School of Information, Central South University of Economy, Politics and Law, Wuhan 430064, China,4. School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China Correspondence should be addressed to Liao Xiaoxin (email: xiaoxin_liao@hotmail.com).On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization[J].Science in China(Series F),2005,48(3):304-321. 被引量:23
  • 2王发强,刘崇新.Hyperchaos evolved from the Liu chaotic system[J].Chinese Physics B,2006,15(5):963-968. 被引量:32
  • 3廖晓昕,罗海庚,傅予力,谢胜利,郁培.论Lorenz系统族的全局指数吸引集和正向不变集[J].中国科学(E辑),2007,37(6):757-769. 被引量:24
  • 4王光义,刘敬彪,郑欣.Analysis and implementation of a new hyperchaotic system[J].Chinese Physics B,2007,16(8):2278-2284. 被引量:21
  • 5Fujisaka H, Yamada T. Stability theory of synchronization motion in coupled-oscillator systems [J].Prog Theor Phys, 1983, 69(1): 32.
  • 6Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990, 64(8):821.
  • 7Kocrev L, Parlitz U. Generalized synchronization, predictability and equivalence of unidirectionally cou- pled system[J]. Phys Rev Lett, 1996, 76 (11): 1816.
  • 8Vincent U E, Njah A N, Akinlade O, et al. Phase synchronization in unidirectionally coupled chaotic ratchets[J]. Chaos, 2004, 14(4) : 1018.
  • 9Liao T L. Adaptive synchronization of two Lorenz systems[J]. Chaos, Solitons & Fractals, 1998, 9: 1555.
  • 10Rosenblum M G, Pikovsky A S, Kurths J. From phase to lag synchronization in coupled chaotic oscillators[J]. Phys Rev Lett, 1997, 78(22):4193.

共引文献35

同被引文献23

  • 1Battelli F, Feckan M. Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous sys- tems[J]. Physica D, 2012, 241 : 1962.
  • 2Bernardo M D, Budd C J, Champneys A R, et al. Piecewise-smooth dynamical systems: theory and applications[M]. London: Springer-Verlag: 2008.
  • 3Du Z, Li Y, Shen J, Zhang W. Impact oscillators with homoclinic orbittangent to the wall[J]. Physica D, 2013, 245: 19.
  • 4Du Z, Zhang W. Melnikov method for homoclinic bi- furcation in nonlinear impact oscillators[J]. Comput Math Appl, 2005, 50: 445.
  • 5Feckan M. Bifurcation and chaos in discontinuous and continuous systems[M]. Beijing: Higher Edu- cation Press, 2011.
  • 6Guekenheimer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields [M]. New York: Springer-Verlag, 1983.
  • 7Hale J. Ordinary differential equations[M]. Hun- tington: Rober E Krieger Publishing Company, 1980.
  • 8Ide K, Wiggins S. The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator[J]. Physica D,1989, 34, 169.
  • 9Melnikov V K. On the stability of the center for time periodic perturbations [J]. Trans Moscow Math Soc, 1963, 12: 1.
  • 10Wiggins S. Global bifurcations and chaos-analytical methods[M]. New York: Springer-Verlag, 1988.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部